
Behavioral Modeling

Dr.K.Sivasankaran
Associate Professor,
School of Electronics

Engineering

Behavioral Level Modeling

 This is the highest level of abstraction provided by Verilog

HDL.

 A module can be implemented in terms of the desired design

algorithm without concern for the hardware implementation

details.

 Designing at this level is very similar to C programming.

K Sivasankaran 2FPGA BASED SYSTEM DESIGN

Behavioral modeling

• There are two structured procedures in Verilog:
– initial
– always

• Concurrent execution is observed in between these
procedures.

• Sequential / concurrent execution can be realized within these
procedures.

• Only registers can be assigned in these procedures.

• The assignments in these procedures are called “procedural
assignments”.

K Sivasankaran 3FPGA BASED SYSTEM DESIGN

Typical Procedural Block

K Sivasankaran 4FPGA BASED SYSTEM DESIGN

initial statement

• Starts execution at ‘0’ simulation time and executes only once

during the entire simulation.

• Multiple statements in initial block can be grouped with (begin

& end) or (fork & join) keywords.

• These blocks are not synthesizable.

K Sivasankaran 5FPGA BASED SYSTEM DESIGN

initial statement

• initial blocks cannot be nested.

• Each initial block represent a separate and independent
activity.

• initial blocks are used in generating test benches.

K Sivasankaran 6FPGA BASED SYSTEM DESIGN

initial block structures

initial
begin
and_out = a_in & b_in;

end

initial
begin

enable = 1’b0;
rst = 1’b0;
#100 rst = 1’b1;
#20 enable = 1’b1;

end

initial
xor_out = in1 ^ in2;

initial
begin

clk = 1’b0;
reset = 1’b0;

initial
begin

#100 reset = 1’b1;
#20 clk = 1’b1;

end
end

K Sivasankaran 7FPGA BASED SYSTEM DESIGN

Multiple Initial Blocks

• A module can have as many initial blocks as desired.

• All of them are activated at the start of simulation.

• The time delays specified in one initial block are exclusive of

those in any other block.

K Sivasankaran 8FPGA BASED SYSTEM DESIGN

Example

module nil1;
initial
reg a, b;
begin
a = 1'b0;
b = 1'b0;
$display ($time,"display: a = %b, b = %b", a, b);
#2 a = 1'b1;
#3 b = 1'b1;
#1 a = 1'b0;
end

initial
#100$stop;
initial $monitor ($time, “monitor: a =
%b, b = %b", a, b);
initial
begin
#2 b = 1'b1;
end
endmodule

K Sivasankaran 9FPGA BASED SYSTEM DESIGN

always statement

• Starts execution at ‘0’ simulation time and is active all through
out the entire simulation.

• Multiple statements inside always block can be grouped with
(begin & end) or (fork & join) keywords.

• Execution of always blocks is controlled by using the timing
control.

• always blocks cannot be nested.

K Sivasankaran 10FPGA BASED SYSTEM DESIGN

always statement

• An always block without any sensitivity control will create an
infinite loop and execute forever.

• Each always block represent a separate and independent
activity.

• These blocks can synthesize to different hardware
depending on their usage.

• always block with timing control are synthesizable.

K Sivasankaran 11FPGA BASED SYSTEM DESIGN

always block structures
always @(a_in or b_in)
begin

and_out = a_in & b_in;
end

always @(posedge reset)
begin
if (reset == 1’b1)
q_out = 1’b0;
else
q_out = d_in;

end

always
xor_out = in1 ^ in2;

always
begin

cnt = 1’b0;
reset = 1’b0;
always @(posedge clk)
begin

#100 cnt = 1’b1;
#20 enable = 1’b1;

end
end

K Sivasankaran 12FPGA BASED SYSTEM DESIGN

Multiple always Blocks

• All the activities within an always block are scheduled for

sequential execution.

• The activities can be of a combinational nature, a clocked

sequential nature, or a combination of these two.

• Basically, any circuit block whose end-to-end operation can be

described as a continuous sequence can be described within

an always block.

K Sivasankaran 13FPGA BASED SYSTEM DESIGN

A module where execution proceeds through
three blocks sequentially

K Sivasankaran 14FPGA BASED SYSTEM DESIGN

A module where execution proceeds concurrently
through two groups of blocks

K Sivasankaran 15FPGA BASED SYSTEM DESIGN

Designs at Behavioral Level

• All simple algebraic as well as logical expressions can be
described at the behavioral level.

• One can also mix them with blocks at the gate level as well as
the data flow level to form composite as well as more
involved modules.

K Sivasankaran 16FPGA BASED SYSTEM DESIGN

Example-1 (with begin & end Statement)

module aoibeh(o,a,b);
output o;
input[1:0]a,b;
reg o,a1,b1,o1;
always@(a[1] or a[0]or b[1]or b[0])
begin
a1=&a;
b1=&b;
o1=a1|b1;
o=~o1;
end
endmodule

K Sivasankaran 17FPGA BASED SYSTEM DESIGN

Example-2 (without begin & end Statement)

module aoibeh1(o,a,b);
output o;
input[1:0]a,b;
reg o;
always@(a[1]ora[0]or b[1]orb[0])

o=~((&a)|(&b));
endmodule

K Sivasankaran 18FPGA BASED SYSTEM DESIGN

Example-3(Combination of primitive instantiation & Procedural
assignment)

module aoibeh2(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
and g1(a1,a[1],a[0]),g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1|b1);
endmodule

K Sivasankaran 19FPGA BASED SYSTEM DESIGN

Example-4 (Combination of Continuous Assignment &
Procedural assignment)

module aoibeh3(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a,b1=&b;
always@(a1 or b1)o=~(a1|b1);
endmodule

K Sivasankaran 20FPGA BASED SYSTEM DESIGN

Example-5 (Combination of Continuous Assignment ,Gate
Instantiation & Procedural assignment)

module aoibeh4(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a;
and g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1|b1);
endmodule

K Sivasankaran 21FPGA BASED SYSTEM DESIGN

Block statements

• Provides a means of grouping two or more procedural
statements together.

• Types of blocks:
– sequential block / begin-end block
– parallel block / fork-join block

• These blocks can be nested.

• These blocks can be mixed.

K Sivasankaran 22FPGA BASED SYSTEM DESIGN

begin-end Construct

• Statements are executed sequentially one after the other.

• If delay is specified, it is relative to the time when the
previous statement in the block is executed.

• Control leaves the block after executing the last statement.

Format:
begin
<statements>

end

K Sivasankaran 23FPGA BASED SYSTEM DESIGN

begin-end Construct

• If a procedural block has only one assignment to be carried out, it can be
specified as below:

initial #2 a=0;
• More often more than one procedural assignment is to be carried out in

an initial block.
• All such assignments are grouped together between “begin” and “end”

declarations.
The following are to be noted here:
• Every begin declaration must have its associated end declaration.
• begin – end constructs can be nested as many times as desired.
• For clarity in description and to avoid mistakes, nested begin – end blocks
• are separated suitably

K Sivasankaran 24FPGA BASED SYSTEM DESIGN

Nesting of begin-end block

K Sivasankaran 25FPGA BASED SYSTEM DESIGN

Parallel block
Format:
fork
<statements>

join

 Statements are executed concurrently.

 If delay is specified, it is relative to the time, when the block has
started its execution.

 Control leaves the block after executing the last time ordered
statement.

K Sivasankaran 26FPGA BASED SYSTEM DESIGN

fork-join Construct

• The fork–join block is an alternate one where all the assignments are
carried out concurrently
module fk_jn_a;
integer a;
initial
begin
a=0;
#1 a=1;
#2 a=2;
#3 a=3;
#4 $stop;
end
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule
//Simulation results
a=0, t=0
a=1, t=1
a=2, t=3
a=3, t=6

module fk_jn_b;
integer a;
initial
fork
a=0;
#1 a=1;
#2 a=2;
#3 a=3;
#4 $stop;
join
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule
//Simulation results
a=0, t=0
a=1, t=1
a=2, t=2
a=3, t=3K Sivasankaran 27FPGA BASED SYSTEM DESIGN

Nested blocks

• Blocks can be nested.
• Sequential and parallel blocks can be mixed

//Nested blocks
initial
begin
x = 1'b0;
fork
#5 y = 1'b1;
#10 z = {x, y};

join
#20 w = {y, x};
end

K Sivasankaran 28FPGA BASED SYSTEM DESIGN

Named blocks

• Blocks can be given names.
• Local variables can be declared for the named block.
• Named blocks are a part of the design hierarchy.
• Named blocks can be disabled, i.e., their execution can be stopped.
//Named blocks module top;
initial begin: block1 //sequential block named block1

integer i; //integer i is static and local to block1
... ...
end

initial fork: block2 //parallel block named block2
reg i; // register i is static and local to block2
.. ... join

K Sivasankaran 29FPGA BASED SYSTEM DESIGN

Disabling named blocks

• The keyword disable provides a way to terminate the
execution of a named block.

• disable can be used to get out of loops, handle error
conditions, or control execution of pieces of code, based on a
control signal.

• Disabling a block causes the execution control to be passed to
the statement immediately succeeding the block.

K Sivasankaran 30FPGA BASED SYSTEM DESIGN

Disabling named blocks -Example

reg [15:0] flag;
integer i; //integer to keep count
initial
begin
flag = 16'b 0010_0000_0000_0000;
i = 0; begin: block1 //The main block inside while is named block1
while(i < 16)
begin
if (flag[i])
begin
$display("Encountered a TRUE bit at element number %d", i);
disable block1; //disable block1 because you found true bit.
end
i = i + 1;
end
end
end

K Sivasankaran 31FPGA BASED SYSTEM DESIGN

Continuous Vs. procedural assignments

Continuous assignment Procedural assignment

Occurs within a module. Occurs inside an always or an
initial statement.

Executes concurrently with
other statements.

Execution is w.r.t. other
statements surrounding it.

Drives nets. Drives registers.

Uses “=” assignment operator. Uses “=” or “<=” assignment
operator.

Uses assign keyword. No assign keyword (exception).

 K Sivasankaran 32FPGA BASED SYSTEM DESIGN

Procedural assignments

• These are for updating reg, integer, real, time and their bit / part
selects.

• The values of the variables can get changed only by another
procedural assignment statement.

• Procedural assignments are of two types

– blocking procedural assignment

– non-blocking procedural assignment

K Sivasankaran 33FPGA BASED SYSTEM DESIGN

Blocking Assignment

• Most Commonly used type

• The target of assignment gets updated before the next

sequential statement in procedural block is executed.

• A statement using blocking assignment blocks the execution

of the statements following it, until it gets completed.

• Recommended style for modeling combinational logic.(data

dependency)

K Sivasankaran 34FPGA BASED SYSTEM DESIGN

Blocking Assignment-Example

reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count; //All behavioral statements must be inside an initial or always block

initial
begin
x = 0;
y = 1;
z = 1; //Scalar assignments

count = 0; //Assignment to integer variables
reg_a = 16'b0;
reg_b = reg_a; //initialize vectors
#15 reg_a[2] = 1'b1; //Bit select assignment with delay
#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

K Sivasankaran 35FPGA BASED SYSTEM DESIGN

Non-Blocking Assignment

• The assignments to the target gets scheduled for the end of the
simulation cycle.

– Normally occurs at the end of the sequential block (begin …..
end)

– Statements subsequent to the instruction under the
consideration are not blocked by the assignment.

• Recommended style for modeling sequential logic

- Can be used to assign several ‘reg’ type variables synchronously,
under the control of a common block

K Sivasankaran 36FPGA BASED SYSTEM DESIGN

Nonblocking Assignments

reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;
initial
begin
x = 0;
y = 1;

z = 1;
count = 0;
reg_a = 16'b0;
reg_b = reg_a;
reg_a[2] <= #15 1'b1;
reg_b[15:13] <= #10 {x, y, z};
count <= count + 1;
end

always @(posedge clock)
begin
reg1 <= #1 in1;
reg2 <= @(negedge clock) in2 ^ in3;
reg3 <= #1 reg1;
end

K Sivasankaran 37FPGA BASED SYSTEM DESIGN

Rules to be followed

• Verilog synthesizer ignores the delays specified in a
procedural assignment statement.
– May lead to functional mismatch between the design

model and the synthesized netlist.
• A variable cannot appear as the target of both a blocking and

a non-blocking assignment.

Following is not permissible
value = value +1;
value <=init

K Sivasankaran 38FPGA BASED SYSTEM DESIGN

Parameter

A parameter is a constant with a name.
- No size is allowed to be specified for a parameter.
– The size gets decided from the constant itself (32-bits if

nothing is specified).

• Examples:
parameter HI = 25, LO = 5;

K Sivasankaran 39FPGA BASED SYSTEM DESIGN

Parameterized design: an N-bit counter

module counter (clear, clock, count);
parameter N = 7;
input clear, clock;
output [0:N] count;
reg [0:N] count;
always @ (negedge clock)
if (clear)
count <= 0;
else
count <= count + 1;
endmodule
K Sivasankaran 40FPGA BASED SYSTEM DESIGN

Using more than one clocks in a module

module multiple_clk (clk1, clk2, a, b, c, f1, f2);
input clk1, clk2, a, b, c;
output f1, f2;
reg f1, f2;
always @ (posedge clk1)
f1 <= a & b;
always @ (negedge clk2)
f2 <= b ^ c;
endmodule

K Sivasankaran 41FPGA BASED SYSTEM DESIGN

Using multiple edges of the same clock for High Speed Circuit
Design

module multi_phase_clk (a, b, f, clk);

input a, b, clk;

output f;

reg f, t;

always @ (posedge clk)

f <= t & b;

always @ (negedge clk)

t <= a | b;

endmodule

K Sivasankaran 42FPGA BASED SYSTEM DESIGN

A Ring Counter - Example

module ring_counter (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
begin
count = count << 1;
count[0] = count[7];
end
end
endmodule
K Sivasankaran 43FPGA BASED SYSTEM DESIGN

A Ring Counter Example (Modified-1)

module ring_counter_modi1 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
begin

count <= count << 1;
count[0] <= count[7];
end
end
endmodule
K Sivasankaran 44FPGA BASED SYSTEM DESIGN

A Ring Counter Example (Modified-2)

module ring_counter_modi1 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
count = { count[6:0], count[7]};
end
endmodule

K Sivasankaran 45FPGA BASED SYSTEM DESIGN

Race Condition

always @ (a or b) always @ (a or b)
a=b; a=b;
always @ (a or b) always @ (x)
b=a; b=a;

always @ (a or b)
a<=b;
always @ (a or b)
b<=a;

K Sivasankaran 46FPGA BASED SYSTEM DESIGN

Blocking Assignment-Inter assignment delay

module nil1 (c1, a, b);
output c1;
input a, b;
reg c1;
always @(a or b)
#3 c1 = a & b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 47

Blocking Assignment-Intra assignment delay

module nil2 (c2, a, b);
output c2;
input a, b;
reg c2;
always @(a or b)
c2 = #3 a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 48

Non-Blocking Assignment-Inter assignment delay

module nil3 (c3, a, b);
output c3;
input a, b;
reg c3;
always @(a or b)
#3 c3 <= a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 49

Non-Blocking Assignment-Intra assignment delay

module nil4 (c4, a, b);
output c4;
input a, b;
reg c4;
always @(a or b)
c4 <= #3 a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 50

Reference

1. Samir Palnitkar,”Verilog HDL: A Guide to Digital Design and
Synthesis” Prentice Hall, Second Edition,2003

2. T.R.Padmanabhan and B.Balatripura Sundari, “Design Through
Verilog HDL” Wiley Student Edition

K Sivasankaran FPGA BASED SYSTEM DESIGN 51

