Behavioral Modeling

Dr.K.Sivasankaran
Associate Professor,
School of Electronics

Engineering

Behavioral Level Modeling

» This is the highest level of abstraction provided by Verilog
HDL.

» A module can be implemented in terms of the desired design
algorithm without concern for the hardware implementation

details.

» Designing at this level is very similar to C programming.

Behavioral modeling

There are two structured procedures in Verilog:
— initial
— always

* Concurrent execution is observed in between these
procedures.

* Sequential / concurrent execution can be realized within these
procedures.

* Only registers can be assigned in these procedures.

* The assignments in these procedures are called “procedural
assignments”.

K Sivasankaran FPGA BASED SYSTEM DESIGN 3

Typical Procedural Block

Type of block is specified here: only two types
are possible;- initial 4 always

The symbol signifies an event control (only for
always blocks)

Specifies the event which flags off the execution
of the block (only for always blocks)

Y A\J
type_of_block @(sensitivity lst)

—>» begin; name_ol block «

local variable declaralions; «

procedural assignmenl g
slatements;

L » end

All the activities within the block are enclosed within
the begin-end construct

The procedural statements form the body of the block ——

All variables etc., local 1o the block are declared at —
the beginning of the block

K Sivasankaran EPGA BASED ggﬁu ._:."W“ IS?S%NNM a name which can be

initial statement

e Starts execution at ‘0’ simulation time and executes only once

during the entire simulation.

* Multiple statements in initial block can be grouped with (begin

& end) or (fork & join) keywords.

* These blocks are not synthesizable.

K Sivasankaran FPGA BASED SYSTEM DESIGN 5

initial statement

e jinitial blocks cannot be nested.

* Each initial block represent a separate and independent
activity.

* initial blocks are used in generating test benches.

K Sivasankaran FPGA BASED SYSTEM DESIGN 6

initial block structures

initial initial
xor_out = in1 # in2; baerflgclinout =a_in & b _in;
end
initial
initial begin
begin clk = 1'b0;
enable = 1"b0; reset =1'b0;
rst =1'b0; initial
#100 rst =1"bl; begin
#20 enable = 1'b1; #100 reset =1'b1;
end #20 clk = 1'b1;
end
end
K Sivasankaran FPGA BASEDSYSTEIVI DEoTGON 7

Multiple Initial Blocks

* A module can have as many initial blocks as desired.
 All of them are activated at the start of simulation.

* The time delays specified in one initial block are exclusive of

those in any other block.

Example

initial
#100Sstop;
initial Smonitor (Stime, “monitor: a =
module nill; %b, b = %b", a, b);
initial initial
. begin
reg a, b; #2 b=1'b1;
begin end
3 = 1'b0: endmodule
b=1'b0;
Sdisplay (Stime,"display: a = %b, b = %b", a, b);
#2 a=1'bl;
#3 b =1'b1;
#1 a=1'b0;
end

K Sivasankaran FPGA BASED SYSTEM DESIGN 9

always statement

Starts execution at ‘0’ simulation time and is active all through
out the entire simulation.

Multiple statements inside always block can be grouped with
(begin & end) or (fork & join) keywords.

Execution of always blocks is controlled by using the timing
control.

always blocks cannot be nested.

K Sivasankaran FPGA BASED SYSTEM DESIGN 10

always statement

* An always block without any sensitivity control will create an
infinite loop and execute forever.

 Each always block represent a separate and independent
activity.

* These blocks can synthesize to different hardware
depending on their usage.

* always block with timing control are synthesizable.

always block structures

Iways @(a_in or b_in)
Iways egin
xor_out = inl A in2; and_out = a_in & b_in;
nd
lways @(posedge reset) lw?ys
. egin
begin cnt = 1'b0
if (reset == 1'b1) reset = 1” b0;
q_out = 1'b0; always @(posedge clk)
else o begin
q_out = d_in; #100 cnt =1'b1;
end #20 enable = 1'b1;
end
end

K Sivasankaran FPGA BASED SYSTEM DESIGN 12

Multiple always Blocks

* All the activities within an always block are scheduled for

sequential execution.

e The activities can be of a combinational nature, a clocked

sequential nature, or a combination of these two.

* Basically, any circuit block whose end-to-end operation can be
described as a continuous sequence can be described within

an always block.

K Sivasankaran FPGA BASED SYSTEM DESIGN 13

A module where execution proceeds throughhss/

three blocks sequentially

y L
;
> —> 3 D
—l P —l q

>
h

(S]

K Sivasankaran FPGA BASED SYSTEM DESIGN 14

A module where execution proceeds concurrently

through two groups of blocks

—
v
—
LIV
B

U

k
=

>
B | — — B,
> 2

LIS

K Sivasankaran FPGA BASED SYSTEM DESIGN 15

Designs at Behavioral Level

* Allsimple algebraic as well as logical expressions can be
described at the behavioral level.

* One can also mix them with blocks at the gate level as well as

the data flow level to form composite as well as more
involved modules.

Example-1 (with begin & end Statement)

module aoibeh(o,a,b);

output o;

input[1:0]a,b;

reg o,al,bl,o0l;

always@(a[1] or a[0]or b[1]or b[0])

begin

al=&a;

bl=&b;

ol=al | bl' a[1:.0][> A a_1—E}IQ;;_O—m@yg\ out ml“)flf) out —.
0="01; P

end b1:0] [-2 \d
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 17

Example-2 (without begin & end Statement)

module aoibeh1(o,a,b);
output o;
input[1:0]a,b;

reg o;

always@(a[1]ora[O]or b[1]orb[0])
0="((&a) | (&b));

endmodule
1
ix13 15
a[1:0 [-2l)—'”[?—‘)r\\ out_in Ix\mﬂD_
in[1] ~ i
b1_and_1 o

1:0 hY: |
b[1:0] == —

S

K Sivasankaran FPGA BASED SYSTEM DESIGN 18

Example-3(Combination of primitive instantiation & Procedurals*i*
assignment) :

module aoibeh2(o,a,b);

output o;

input[1:0]a,b;

wire al,bl;

reg o;

and gl(al,a[1],a[0]),g2(b1,b[1],b[0]);
always@(al or bl)

O=~(a1 | bl); — 2 . al e info ix13 ix15
a[1:0) -0l }—U)r\\out i~y out (—
endmodule ol ond 1 [o

1:0 Nd
b[1:0] [=2 o

S

K Sivasankaran FPGA BASED SYSTEM DESIGN 19

Example-4 (Combination of Continuous Assignment &

Procedural assignment)

module aoibeh3(o,a,b);
output o;

input[1:0]a,b;

wire al,bl;

reg o;

assign al=&a,b1=&b;
always@(al or bl)o=~(al|bl);
endmodule

al_and_0 13 o5
—._al1:0 N in[0] X~ &
a[1:.0) [== ~out_in[™~_ out —.
/ n1l) O ’
’ (o]

b[1:0] : a[1:0])d

K Sivasankaran FPGA BASED SYSTEM DESIGN 20

Example-5 (Combination of Continuous Assignment ,Gate
Instantiation & Procedural assighment)

module aoibeh4(o,a,b);
output o;
input[1:0]a,b;

wire al,bl;

reg o;
assign al=&a;
and g2(b1,b[1],b[0]);

al and 0

b1_and_1 — 0
endmodule o[t:0] -2 /)L

K Sivasankaran FPGA BASED SYSTEM DESIGN 21

Block statements

Provides a means of grouping two or more procedural
statements together.

Types of blocks:
— sequential block / begin-end block
— parallel block / fork-join block

These blocks can be nested.

These blocks can be mixed.

K Sivasankaran FPGA BASED SYSTEM DESIGN 22

begin-end Construct

Format:

begin
<statements>

end

* Statements are executed sequentially one after the other.

* If delay is specified, it is relative to the time when the
previous statement in the block is executed.

* Control leaves the block after executing the last statement.

K Sivasankaran FPGA BASED SYSTEM DESIGN 23

begin-end Construct

* |If a procedural block has only one assignment to be carried out, it can be
specified as below:

initial #2 a=0;
* More often more than one procedural assignment is to be carried out in
an initial block.

e All such assignments are grouped together between “begin” and “end”
declarations.

The following are to be noted here:

* Every begin declaration must have its associated end declaration.

* begin — end constructs can be nested as many times as desired.

e For clarity in description and to avoid mistakes, nested begin — end blocks
e are separated suitably

K Sivasankaran FPGA BASED SYSTEM DESIGN 24

Nesting of begin-end block

K Sivasankaran

begin <

assignments

begin «
assignments
o
1 (]
begin «— 2
Z]
. 9 o2 =
assignments E3 g
R =
end <« |
end <«

end «

block

outermost

block

FPGA BASED SYSTEM DESIGN

25

Parallel block

Format:

fork
<statements>

join

> Statements are executed concurrently.

> If delay is specified, it is relative to the time, when the block has
started its execution.

> Control leaves the block after executing the last time ordered
statement.

K Sivasankaran FPGA BASED SYSTEM DESIGN 26

fork-join Construct

* The fork=join block is an alternate one where all the assignments are

carried out concurrently

. module fk_jn_b;
module fk_jn_a;

. integer a;
integer a; e e
initial initial
begin fork
a=0; a=0;
#1 a=1; #1 a=1;
#2 a=2; #2 a=2;
#3 a=3; #3 a=3;
#4 $stop; #4 Sstop;
end . .

join

initial Smonitor ("a=%0d,

- i "o
t=%0d" a,$time); initial Smonitor ("a=%0d,

t=%0d",a,Stime);

endmodule

//Simulation results endmodule

#a=0, t=0 //Simulation results
#a=1, t=1 # a=0, t=0

#a=2,1=3 #a=1,t=1

#a=3, t=6 #a=2, t=2

K Sivasankaran FPG& g@é? St(%%l\/l DESIGN 27

Nested blocks

* Blocks can be nested.
e Sequential and parallel blocks can be mixed

//Nested blocks
initial

begin

X =1'b0;

fork
#5vy=1'b1;
#10z ={x, y};
join

#20 w ={y, x};
end

K Sivasankaran FPGA BASED SYSTEM DESIGN 28

Named blocks

* Blocks can be given names.

* Local variables can be declared for the named block.

* Named blocks are a part of the design hierarchy.

 Named blocks can be disabled, i.e., their execution can be stopped.
//Named blocks module top;

initial begin: blockl1 //sequential block named block1

integer i; //integer i is static and local to block1

end

initial fork: block2 //parallel block named block2

reg i; // register i is static and local to block?2

K Sivasankaran FPGA BASED SYSTEM DESIGN

29

Disabling named blocks

* The keyword disable provides a way to terminate the
execution of a named block.

* disable can be used to get out of loops, handle error
conditions, or control execution of pieces of code, based on a
control signal.

* Disabling a block causes the execution control to be passed to
the statement immediately succeeding the block.

K Sivasankaran FPGA BASED SYSTEM DESIGN 30

Disabling named blocks -Example

reg [15:0] flag;

integer i; //integer to keep count

initial

begin

flag = 16'b 0010_0000_0000_0000;

i = 0; begin: block1 //The main block inside while is named block1
while(i < 16)

begin

if (flagli])

begin

Sdisplay("Encountered a TRUE bit at element number %d", i);
disable block1; //disable block1 because you found true bit.
end

i=i+1;

end

end

end

K Sivasankaran FPGA BASED SYSTEM DESIGN 31

Continuous Vs. procedural assignments

Continuous assignment Procedural assignment

Occurs within a module. Occurs inside an always or an
initial statement.

Executes concurrently with Execution is w.r.t. other
other statements. statements surrounding it.

Drives nets. Drives registers.

u_n u_n

Uses “=" assignment operator. | Uses “=" or “<=" assignment
operator,

Uses assign keyword. No assign keyword (exception).

Procedural assighments

These are for updating reg, integer, real, time and their bit / part
selects.

The values of the variables can get changed only by another
procedural assignment statement.

Procedural assignments are of two types

— blocking procedural assignment

— non-blocking procedural assignment

K Sivasankaran FPGA BASED SYSTEM DESIGN 33

Blocking Assighment

Most Commonly used type

The target of assignment gets updated before the next

sequential statement in procedural block is executed.

A statement using blocking assignment blocks the execution

of the statements following it, until it gets completed.

Recommended style for modeling combinational logic.(data

dependency)

Blocking Assignment-Example

regx,y, z;
reg [15:0] reg_a, reg_b;

integer count; //All behavioral statements must be inside an initial or always block
initial

begin

Xx=0;

y=1,

z = 1; //Scalar assignments

count = 0; //Assighment to integer variables

reg_a=16'b0;

reg_b =reg a; //initialize vectors

#15 reg_a[2] = 1'b1; //Bit select assignment with delay

#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

K Sivasankaran FPGA BASED SYSTEM DESIGN 35

Non-Blocking Assignment

The assignments to the target gets scheduled for the end of the

simulation cycle.

— Normally occurs at the end of the sequential block (begin
end)

— Statements subsequent to the instruction under the

consideration are not blocked by the assignment.
Recommended style for modeling sequential logic

- Can be used to assign several ‘reg’ type variables synchronously,

under the control of a common block

Nonblocking Assighments

regx, vy, z; always @(posedge clock)

reg [15:0] reg_a, reg_b; :

integer count; begm .

initial regl <=#1inl;

begin reg2 <= @(negedge clock) in2 ~ in3;
3;2’, reg3 <= #1regl;

7=1; end

count = 0;

reg_a=16'b0;

reg b =reg a;

reg_a[2] <= #15 1'b1;
reg_b[15:13] <= #101{x, v, z};
count <= count + 1;

end

K Sivasankaran FPGA BASED SYSTEM DESIGN 37

Rules to be followed

 Verilog synthesizer ignores the delays specified in a
procedural assignment statement.

— May lead to functional mismatch between the design
model and the synthesized netlist.

* A variable cannot appear as the target of both a blocking and
a non-blocking assignment.

Following is not permissible

value = value +1;
value <=init

K Sivasankaran FPGA BASED SYSTEM DESIGN 38

Parameter

A parameter is a constant with a name.
- No size is allowed to be specified for a parameter.

— The size gets decided from the constant itself (32-bits if
nothing is specified).

* Examples:
parameter HI = 25, LO = 5;

K Sivasankaran FPGA BASED SYSTEM DESIGN 39

Parameterized design: an N-bit counter

module counter (clear, clock, count);
parameter N =7;

input clear, clock;

output [0:N] count;

reg [0:N] count;

always @ (negedge clock)
if (clear)

count <= 0;

else

count <= count + 1;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 40

Using more than one clocks in a module

module multiple_clk (clk1, clk2, a, b, ¢, 1, £2);
input clkl1, clk2, a, b, ¢;

output f1, {2;

reg {1, {2;

always @ (posedge clk1)

f1 <=a & b;

always @ (negedge clk2)

f2<=Db A

endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 41

Using multiple edges of the same clock for High Speed Circui-‘:\\ ‘
D o n = s S

module multi_phase_clk (a, b, f, clk);
input a, b, clk;

output f;

reg f, t;

always @ (posedge clk)

f<=t&b;

always @ (negedge clk)

t<=a | b;

endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 42

A Ring Counter - Example

module ring_counter (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;

always @ (posedge clk)

begin

if (init)

count = 8 b10000000;

else

begin

count = count << 1;

count[0] = count[7];

end

end

endmodule
K Sivasankaran FPGA BASED SYSTEM DESIGN 43

A Ring Counter Example (Modified-1)

module ring_counter_modil (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;

always @ (posedge clk)

begin

if (init)

count = 8 b10000000;

else

begin

count <= count << 1;

count[0] <= count[7];

end

end

endmodule
K Sivasankaran FPGA BASED SYSTEM DESIGN 44

A Ring Counter Example (Modified-2)

module ring_counter_modil (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;

always @ (posedge clk)

begin

if (init)

count = 8 b10000000;

else

count = { count[6:0], count[7]};
end

endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 45

Race Condition

always @ (a or b) always @ (a or b)
a=b; a=b;

always @ (a or b) always @ (x)
b=a; b=a;

always @ (a or b)
a<=Db;
always @ (a or b)
b<=a;

K Sivasankaran FPGA BASED SYSTEM DESIGN 46

Blocking Assignment-Inter assignment delay (phes

module nill (c1, a, b);
output cl;

input a, b;

reg cl;

always @(a or b)
#3cl=a & b;
endmodule

K Sivasankaran

—)IT—P I“—P

e}

o
S

(2]
L]

L]
=

FPGA BASED SYSTEM DESIGN 47

Blocking Assignment-Intra assighment delay (phes

module nil2 (c2, a, b); J
output c2; .
input a, b; :’r_
reg c2; t
always @(a or b) ;
c2 = #3 a&b; c2
endmodule
c3
c4
|]] | |
0| 2 4 6 8

K Sivasankaran FPGA BASED SYSTEM DESIGN 48

Non-Blocking Assignment-Inter assignment delay

module nil3 (c3, a, b); J

output c3; N

input a, b; :’r_

reg c3; t

always @(a or b) ;

#3 c3 <= a&b; 2

endmodule _
c3
c4

| |]] |

o | 2 4 6 8

K Sivasankaran FPGA BASED SYSTEM DESIGN 49

Non-Blocking Assignment-Intra assignment delay

module nil4 (c4, a, b); !
output c4; 1_
input a, b; ;_
reg c4; ‘!
always @(a or b) o
c4 <= #3 a&b; _
endmodule -
4
T

K Sivasankaran FPGA BASED SYSTEM DESIGN 50

Reference

1. Samir Palnitkar,”Verilog HDL: A Guide to Digital Design and
Synthesis” Prentice Hall, Second Edition,2003

2. T.R.Padmanabhan and B.Balatripura Sundari, “Design Through
Verilog HDL” Wiley Student Edition

K Sivasankaran FPGA BASED SYSTEM DESIGN 51

