
Behavioral Modeling

Dr.K.Sivasankaran
Associate Professor,
School of Electronics

Engineering

Behavioral Level Modeling

 This is the highest level of abstraction provided by Verilog

HDL.

 A module can be implemented in terms of the desired design

algorithm without concern for the hardware implementation

details.

 Designing at this level is very similar to C programming.

K Sivasankaran 2FPGA BASED SYSTEM DESIGN

Behavioral modeling

• There are two structured procedures in Verilog:
– initial
– always

• Concurrent execution is observed in between these
procedures.

• Sequential / concurrent execution can be realized within these
procedures.

• Only registers can be assigned in these procedures.

• The assignments in these procedures are called “procedural
assignments”.

K Sivasankaran 3FPGA BASED SYSTEM DESIGN

Typical Procedural Block

K Sivasankaran 4FPGA BASED SYSTEM DESIGN

initial statement

• Starts execution at ‘0’ simulation time and executes only once

during the entire simulation.

• Multiple statements in initial block can be grouped with (begin

& end) or (fork & join) keywords.

• These blocks are not synthesizable.

K Sivasankaran 5FPGA BASED SYSTEM DESIGN

initial statement

• initial blocks cannot be nested.

• Each initial block represent a separate and independent
activity.

• initial blocks are used in generating test benches.

K Sivasankaran 6FPGA BASED SYSTEM DESIGN

initial block structures

initial
begin
and_out = a_in & b_in;

end

initial
begin

enable = 1’b0;
rst = 1’b0;
#100 rst = 1’b1;
#20 enable = 1’b1;

end

initial
xor_out = in1 ^ in2;

initial
begin

clk = 1’b0;
reset = 1’b0;

initial
begin

#100 reset = 1’b1;
#20 clk = 1’b1;

end
end

K Sivasankaran 7FPGA BASED SYSTEM DESIGN

Multiple Initial Blocks

• A module can have as many initial blocks as desired.

• All of them are activated at the start of simulation.

• The time delays specified in one initial block are exclusive of

those in any other block.

K Sivasankaran 8FPGA BASED SYSTEM DESIGN

Example

module nil1;
initial
reg a, b;
begin
a = 1'b0;
b = 1'b0;
$display ($time,"display: a = %b, b = %b", a, b);
#2 a = 1'b1;
#3 b = 1'b1;
#1 a = 1'b0;
end

initial
#100$stop;
initial $monitor ($time, “monitor: a =
%b, b = %b", a, b);
initial
begin
#2 b = 1'b1;
end
endmodule

K Sivasankaran 9FPGA BASED SYSTEM DESIGN

always statement

• Starts execution at ‘0’ simulation time and is active all through
out the entire simulation.

• Multiple statements inside always block can be grouped with
(begin & end) or (fork & join) keywords.

• Execution of always blocks is controlled by using the timing
control.

• always blocks cannot be nested.

K Sivasankaran 10FPGA BASED SYSTEM DESIGN

always statement

• An always block without any sensitivity control will create an
infinite loop and execute forever.

• Each always block represent a separate and independent
activity.

• These blocks can synthesize to different hardware
depending on their usage.

• always block with timing control are synthesizable.

K Sivasankaran 11FPGA BASED SYSTEM DESIGN

always block structures
always @(a_in or b_in)
begin

and_out = a_in & b_in;
end

always @(posedge reset)
begin
if (reset == 1’b1)
q_out = 1’b0;
else
q_out = d_in;

end

always
xor_out = in1 ^ in2;

always
begin

cnt = 1’b0;
reset = 1’b0;
always @(posedge clk)
begin

#100 cnt = 1’b1;
#20 enable = 1’b1;

end
end

K Sivasankaran 12FPGA BASED SYSTEM DESIGN

Multiple always Blocks

• All the activities within an always block are scheduled for

sequential execution.

• The activities can be of a combinational nature, a clocked

sequential nature, or a combination of these two.

• Basically, any circuit block whose end-to-end operation can be

described as a continuous sequence can be described within

an always block.

K Sivasankaran 13FPGA BASED SYSTEM DESIGN

A module where execution proceeds through
three blocks sequentially

K Sivasankaran 14FPGA BASED SYSTEM DESIGN

A module where execution proceeds concurrently
through two groups of blocks

K Sivasankaran 15FPGA BASED SYSTEM DESIGN

Designs at Behavioral Level

• All simple algebraic as well as logical expressions can be
described at the behavioral level.

• One can also mix them with blocks at the gate level as well as
the data flow level to form composite as well as more
involved modules.

K Sivasankaran 16FPGA BASED SYSTEM DESIGN

Example-1 (with begin & end Statement)

module aoibeh(o,a,b);
output o;
input[1:0]a,b;
reg o,a1,b1,o1;
always@(a[1] or a[0]or b[1]or b[0])
begin
a1=&a;
b1=&b;
o1=a1|b1;
o=~o1;
end
endmodule

K Sivasankaran 17FPGA BASED SYSTEM DESIGN

Example-2 (without begin & end Statement)

module aoibeh1(o,a,b);
output o;
input[1:0]a,b;
reg o;
always@(a[1]ora[0]or b[1]orb[0])

o=~((&a)|(&b));
endmodule

K Sivasankaran 18FPGA BASED SYSTEM DESIGN

Example-3(Combination of primitive instantiation & Procedural
assignment)

module aoibeh2(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
and g1(a1,a[1],a[0]),g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1|b1);
endmodule

K Sivasankaran 19FPGA BASED SYSTEM DESIGN

Example-4 (Combination of Continuous Assignment &
Procedural assignment)

module aoibeh3(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a,b1=&b;
always@(a1 or b1)o=~(a1|b1);
endmodule

K Sivasankaran 20FPGA BASED SYSTEM DESIGN

Example-5 (Combination of Continuous Assignment ,Gate
Instantiation & Procedural assignment)

module aoibeh4(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a;
and g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1|b1);
endmodule

K Sivasankaran 21FPGA BASED SYSTEM DESIGN

Block statements

• Provides a means of grouping two or more procedural
statements together.

• Types of blocks:
– sequential block / begin-end block
– parallel block / fork-join block

• These blocks can be nested.

• These blocks can be mixed.

K Sivasankaran 22FPGA BASED SYSTEM DESIGN

begin-end Construct

• Statements are executed sequentially one after the other.

• If delay is specified, it is relative to the time when the
previous statement in the block is executed.

• Control leaves the block after executing the last statement.

Format:
begin
<statements>

end

K Sivasankaran 23FPGA BASED SYSTEM DESIGN

begin-end Construct

• If a procedural block has only one assignment to be carried out, it can be
specified as below:

initial #2 a=0;
• More often more than one procedural assignment is to be carried out in

an initial block.
• All such assignments are grouped together between “begin” and “end”

declarations.
The following are to be noted here:
• Every begin declaration must have its associated end declaration.
• begin – end constructs can be nested as many times as desired.
• For clarity in description and to avoid mistakes, nested begin – end blocks
• are separated suitably

K Sivasankaran 24FPGA BASED SYSTEM DESIGN

Nesting of begin-end block

K Sivasankaran 25FPGA BASED SYSTEM DESIGN

Parallel block
Format:
fork
<statements>

join

 Statements are executed concurrently.

 If delay is specified, it is relative to the time, when the block has
started its execution.

 Control leaves the block after executing the last time ordered
statement.

K Sivasankaran 26FPGA BASED SYSTEM DESIGN

fork-join Construct

• The fork–join block is an alternate one where all the assignments are
carried out concurrently
module fk_jn_a;
integer a;
initial
begin
a=0;
#1 a=1;
#2 a=2;
#3 a=3;
#4 $stop;
end
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule
//Simulation results
a=0, t=0
a=1, t=1
a=2, t=3
a=3, t=6

module fk_jn_b;
integer a;
initial
fork
a=0;
#1 a=1;
#2 a=2;
#3 a=3;
#4 $stop;
join
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule
//Simulation results
a=0, t=0
a=1, t=1
a=2, t=2
a=3, t=3K Sivasankaran 27FPGA BASED SYSTEM DESIGN

Nested blocks

• Blocks can be nested.
• Sequential and parallel blocks can be mixed

//Nested blocks
initial
begin
x = 1'b0;
fork
#5 y = 1'b1;
#10 z = {x, y};

join
#20 w = {y, x};
end

K Sivasankaran 28FPGA BASED SYSTEM DESIGN

Named blocks

• Blocks can be given names.
• Local variables can be declared for the named block.
• Named blocks are a part of the design hierarchy.
• Named blocks can be disabled, i.e., their execution can be stopped.
//Named blocks module top;
initial begin: block1 //sequential block named block1

integer i; //integer i is static and local to block1
... ...
end

initial fork: block2 //parallel block named block2
reg i; // register i is static and local to block2
.. ... join

K Sivasankaran 29FPGA BASED SYSTEM DESIGN

Disabling named blocks

• The keyword disable provides a way to terminate the
execution of a named block.

• disable can be used to get out of loops, handle error
conditions, or control execution of pieces of code, based on a
control signal.

• Disabling a block causes the execution control to be passed to
the statement immediately succeeding the block.

K Sivasankaran 30FPGA BASED SYSTEM DESIGN

Disabling named blocks -Example

reg [15:0] flag;
integer i; //integer to keep count
initial
begin
flag = 16'b 0010_0000_0000_0000;
i = 0; begin: block1 //The main block inside while is named block1
while(i < 16)
begin
if (flag[i])
begin
$display("Encountered a TRUE bit at element number %d", i);
disable block1; //disable block1 because you found true bit.
end
i = i + 1;
end
end
end

K Sivasankaran 31FPGA BASED SYSTEM DESIGN

Continuous Vs. procedural assignments

Continuous assignment Procedural assignment

Occurs within a module. Occurs inside an always or an
initial statement.

Executes concurrently with
other statements.

Execution is w.r.t. other
statements surrounding it.

Drives nets. Drives registers.

Uses “=” assignment operator. Uses “=” or “<=” assignment
operator.

Uses assign keyword. No assign keyword (exception).

 K Sivasankaran 32FPGA BASED SYSTEM DESIGN

Procedural assignments

• These are for updating reg, integer, real, time and their bit / part
selects.

• The values of the variables can get changed only by another
procedural assignment statement.

• Procedural assignments are of two types

– blocking procedural assignment

– non-blocking procedural assignment

K Sivasankaran 33FPGA BASED SYSTEM DESIGN

Blocking Assignment

• Most Commonly used type

• The target of assignment gets updated before the next

sequential statement in procedural block is executed.

• A statement using blocking assignment blocks the execution

of the statements following it, until it gets completed.

• Recommended style for modeling combinational logic.(data

dependency)

K Sivasankaran 34FPGA BASED SYSTEM DESIGN

Blocking Assignment-Example

reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count; //All behavioral statements must be inside an initial or always block

initial
begin
x = 0;
y = 1;
z = 1; //Scalar assignments

count = 0; //Assignment to integer variables
reg_a = 16'b0;
reg_b = reg_a; //initialize vectors
#15 reg_a[2] = 1'b1; //Bit select assignment with delay
#10 reg_b[15:13] = {x, y, z} //Assign result of concatenation to part select of a vector
count = count + 1; //Assignment to an integer (increment)

end

K Sivasankaran 35FPGA BASED SYSTEM DESIGN

Non-Blocking Assignment

• The assignments to the target gets scheduled for the end of the
simulation cycle.

– Normally occurs at the end of the sequential block (begin …..
end)

– Statements subsequent to the instruction under the
consideration are not blocked by the assignment.

• Recommended style for modeling sequential logic

- Can be used to assign several ‘reg’ type variables synchronously,
under the control of a common block

K Sivasankaran 36FPGA BASED SYSTEM DESIGN

Nonblocking Assignments

reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;
initial
begin
x = 0;
y = 1;

z = 1;
count = 0;
reg_a = 16'b0;
reg_b = reg_a;
reg_a[2] <= #15 1'b1;
reg_b[15:13] <= #10 {x, y, z};
count <= count + 1;
end

always @(posedge clock)
begin
reg1 <= #1 in1;
reg2 <= @(negedge clock) in2 ^ in3;
reg3 <= #1 reg1;
end

K Sivasankaran 37FPGA BASED SYSTEM DESIGN

Rules to be followed

• Verilog synthesizer ignores the delays specified in a
procedural assignment statement.
– May lead to functional mismatch between the design

model and the synthesized netlist.
• A variable cannot appear as the target of both a blocking and

a non-blocking assignment.

Following is not permissible
value = value +1;
value <=init

K Sivasankaran 38FPGA BASED SYSTEM DESIGN

Parameter

A parameter is a constant with a name.
- No size is allowed to be specified for a parameter.
– The size gets decided from the constant itself (32-bits if

nothing is specified).

• Examples:
parameter HI = 25, LO = 5;

K Sivasankaran 39FPGA BASED SYSTEM DESIGN

Parameterized design: an N-bit counter

module counter (clear, clock, count);
parameter N = 7;
input clear, clock;
output [0:N] count;
reg [0:N] count;
always @ (negedge clock)
if (clear)
count <= 0;
else
count <= count + 1;
endmodule
K Sivasankaran 40FPGA BASED SYSTEM DESIGN

Using more than one clocks in a module

module multiple_clk (clk1, clk2, a, b, c, f1, f2);
input clk1, clk2, a, b, c;
output f1, f2;
reg f1, f2;
always @ (posedge clk1)
f1 <= a & b;
always @ (negedge clk2)
f2 <= b ^ c;
endmodule

K Sivasankaran 41FPGA BASED SYSTEM DESIGN

Using multiple edges of the same clock for High Speed Circuit
Design

module multi_phase_clk (a, b, f, clk);

input a, b, clk;

output f;

reg f, t;

always @ (posedge clk)

f <= t & b;

always @ (negedge clk)

t <= a | b;

endmodule

K Sivasankaran 42FPGA BASED SYSTEM DESIGN

A Ring Counter - Example

module ring_counter (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
begin
count = count << 1;
count[0] = count[7];
end
end
endmodule
K Sivasankaran 43FPGA BASED SYSTEM DESIGN

A Ring Counter Example (Modified-1)

module ring_counter_modi1 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
begin

count <= count << 1;
count[0] <= count[7];
end
end
endmodule
K Sivasankaran 44FPGA BASED SYSTEM DESIGN

A Ring Counter Example (Modified-2)

module ring_counter_modi1 (clk, init, count);
input clk, init; output [7:0] count;
reg [7:0] count;
always @ (posedge clk)
begin
if (init)
count = 8’b10000000;
else
count = { count[6:0], count[7]};
end
endmodule

K Sivasankaran 45FPGA BASED SYSTEM DESIGN

Race Condition

always @ (a or b) always @ (a or b)
a=b; a=b;
always @ (a or b) always @ (x)
b=a; b=a;

always @ (a or b)
a<=b;
always @ (a or b)
b<=a;

K Sivasankaran 46FPGA BASED SYSTEM DESIGN

Blocking Assignment-Inter assignment delay

module nil1 (c1, a, b);
output c1;
input a, b;
reg c1;
always @(a or b)
#3 c1 = a & b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 47

Blocking Assignment-Intra assignment delay

module nil2 (c2, a, b);
output c2;
input a, b;
reg c2;
always @(a or b)
c2 = #3 a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 48

Non-Blocking Assignment-Inter assignment delay

module nil3 (c3, a, b);
output c3;
input a, b;
reg c3;
always @(a or b)
#3 c3 <= a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 49

Non-Blocking Assignment-Intra assignment delay

module nil4 (c4, a, b);
output c4;
input a, b;
reg c4;
always @(a or b)
c4 <= #3 a&b;
endmodule

K Sivasankaran FPGA BASED SYSTEM DESIGN 50

Reference

1. Samir Palnitkar,”Verilog HDL: A Guide to Digital Design and
Synthesis” Prentice Hall, Second Edition,2003

2. T.R.Padmanabhan and B.Balatripura Sundari, “Design Through
Verilog HDL” Wiley Student Edition

K Sivasankaran FPGA BASED SYSTEM DESIGN 51

