EEE646 FPGA BASED SYSTEM DESIGN Slot :G1+TG1

Instructor: Dr. K.Sivasankaran, Associate Professor, VLSI Division, School of Electronics Engineering, VIT University <u>ksivasankaran@vit.ac.in</u> <u>ksivasankaran.vlsi@gmail.com</u> Mobile: 9994256440 Cabin: TT238 (IC Design Lab)

- Course Objective & Outcomes
- Syllabus
- Evaluation Procedure
- Integrated Circuit An Overview & Evolution
- VLSI- Device Perspective
- VLSI-System Perspective
- Typical IC Design Flow
- Integrated Circuit Food Chain
- Discussion

VLSI- Device Perspective

Microelectronics to Nanoelectronics

Different scales inside a chip

500x500 nm²

Technology is getting complex

Intel's Transistor

High-k + Metal Gate Transistors

Intel's Transistor

C. Auth et al., pp.131, VLSI2012 (Intel)

PMOS channel under the gate

S/D region showing the SiGe epitaxy

A fin width of 8nm to balance SCE and $\rm R_{ext}$

A fin height of 34nm to balance drive current vs. capacitance

3D Transistor

(intel) Menu 🧹

Find Content

USA (English) 🕀 🛛 Sign In

f in 🕊

O,

Intel® 14 nm Technology Tags: Architecture & Silicon 14nm Process Technology

Ultra-fast, energy-sipping devices powered by Intel

Supporting a wide range of products from mobile devices to servers, 14 nm transistors improve performance and reduce leakage power. Intel[®] 14 nm technology will be used to manufacture a wide range of high-performance to low-power products including servers, personal computing devices, and products for the Internet of Things. The first systems based on the Intel[®] Core[™] M processor were made available on shelves for the holiday selling season followed by broader OEM availability in the first half of 2015. Additional products based on 14 nm process technology will be introduced in the coming months.

Using 2nd generation 3D tri-gate transistors, the 14 nm technology delivers industry-leading performance, power, density, and cost per transistor, and will be

IBM's crazy-thin 7nm chip will hold 20 billion transistors

Looks like Moore's Law has some life in it yet, though creating a 7nm chip required exotic techniques and materials.

Brad Chacos | @BradChacos Senior Editor, PCWorld

Jul 9, 2015 7:03 AM 🛛 🖾 🗍 🖶

How far can we push Moore's Law? It's starting to become a concerning question as processors push into almost infinitesimally small process nodes.

Intel's 14-nanometer Broadwell chips suffered from lengthy delays, stuttering Intel's vaunted tick-tock manufacturing schedule. TSMC, the company that manufactures oraphics processors for AMD and Nvidia has been stuck at the 28nm node for vears

Future - nanoFET devices

Molecular transistors.

• Extensive modeling and comprehensive understanding are mandatory.

Alternatives to existing electronic systems

Performance parameters of a MOSFET

How can we categorize a MOSFET "good" or "bad"?

Threshold voltage (V _{th})	\longrightarrow	Lower
Off-state leakage current (I_{off})	\longrightarrow	Lower
On-state current (I _{on})	\longrightarrow	Higher
Transconductance (g _m)	\longrightarrow	Higher
Channel conductance (g _d)	\longrightarrow	Higher
Sub-threshold slope (S)	\longrightarrow	Smaller
Drain voltage (V _{dd}) —	>	Lower
Channel mobility (µ) —	>	Higher
S/D resistance (R _s and R _d)	\longrightarrow	Lower
DIBL —	>	Lower

- Course Objective & Outcomes
- Syllabus
- Evaluation Procedure
- Integrated Circuit An Overview & Evolution
- VLSI- Device Perspective
- VLSI-System Perspective
- Typical IC Design Flow
- Integrated Circuit Food Chain
- Discussion

VLSI-System Perspective

ASIC

- Application **Specific** Integrated Circuit
- E.g. Chip designed solely for use in cell phone
- A chip that can be designed by an engineer with no particular knowledge of semiconductor physics or semiconductor processes.

What is an FPGA?

- Field Programmable Gate Array
- Gate Array
 - > Two-dimensional array of logic gates
 - Traditionally connected with customized metal
- Field Programmable
 - Field programmability is achieved through switches (Transistors controlled by memory elements or fuses)
 - One FPGA can serve every customer
- FPGA: re-programmable hardware

FPGA vs. ASIC

FPGA = Field Programmable Gate Array flexibility of software + speed of hardware

ASIC = Application Specific Integrated Circuits

CHARACTERISTIC	FPGA	ASIC
Time-to-market	Short	Long
High volume unit cost	High	Low
Flexibility after manufacturing	High	None
Performance	Medium	Very high
Density	Medium	Very high
Power consumption	High	Low
Minimum order quantities	None	High
Design flow complexity	Medium	Very high
Complexity of test	Low	High
Turnaround Time	Hours	Months

Traditional System Design

Next Step...

Configurable System On Chip- CSoC

- Course Objective & Outcomes
- Syllabus
- Evaluation Procedure
- Integrated Circuit An Overview & Evolution
- VLSI- Device Perspective
- VLSI-System Perspective
- Typical IC Design Flow
- Integrated Circuit Food Chain
- Discussion

Typical Design Flow

Design Abstraction Levels

FPGA BASED SYSTEM DESIGN

Introduction

Impact of device variability on circuit performance

The Integrated Circuit Food Chain

