
Module, Data Types and Ports

Dr.K.Sivasankaran
Associate Professor

VLSI Division
School of Electronics Engineering

VIT University

module- Definition

• Any Verilog program begins with a keyword – called a “module.”
• A module is the name given to any system considering it as a black box

with input and output terminals

Module-1 2FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 3

• A module is a basic building block in Verilog and can specify a
system of any complexity.

• The module definition is the same for a system of any
complexity.

• Provides functionality through its port interface.

• It can be an element or a collection of lower-level design
(macro or leaf cells or primitive cells) blocks.

Components of a Verilog Module

Module-1 4FPGA BASED SYSTEM DESIGN

Components of Module

module <module_name> (<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< data flow level modeling>

< Behavior level modeling>
< Structural / Gate level modeling>
< Switch level modeling>
<task and functions>
endmodule

Module-1 5FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 6

• A module in Verilog is declared using the keyword module

and a corresponding keyword endmodule must appear at

the end of the module.

• Each module must have a module name, which acts as an

identifier.

• A module can have an optional port list which describes the

input, output & inout terminals of the module.

Module-1 FPGA BASED SYSTEM DESIGN 7

In Verilog nesting of modules is not permitted i.e., one module definition
cannot contain another module definition within the module and
endmodule statements.

Example:

module counter(q, clk, reset);
output [3:0]q;
input clk, reset;

module T_FF(q, clock, reset) // Illegal
.

endmodule
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 8

module ex2(y,a,b,c,d);
output y;
input a,b,c,d;
wire f1,f2;
or o1(f1,a,b)
and a1(f2,c,d);
xor x1(y,f1,f2);
endmodule

Module name: ex2

No. of ports: 5

Structural Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< Structural / Gate level modeling>

endmodule

Module-1 9FPGA BASED SYSTEM DESIGN

module half_adder (a,b,s,c);
output s,c;
input a,b;

wire s,c;
xor (s,a,b);
and (c,a,b);
endmodule

Data Flow level Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type
declaration>
< parameter
declaration(optional)>

//module’s body//
< data flow level modeling>

endmodule

module half_adder (a,b,s,c);
output s,c;
input a,b;

wire s,c;
assign s=a ^b;
assign c= a & b;
endmodule

Module-1 10FPGA BASED SYSTEM DESIGN

Behavioral Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//

< Behavior level modeling>
endmodule

module register (a,b,s,c);
output s,c;
input a,b;
reg s,c;
always @(a,b)
begin
if (a==0 && b==0)
begin
s=1’b0;
c=1’b0;
end
else if (a==1 && b==0 || a==0 && b==1)
begin
s=1’b1;
c=1’b0;
end
else
s=1’b0;
c=1’b1;
endmodule

Module-1 11FPGA BASED SYSTEM DESIGN

Module-1 12FPGA BASED SYSTEM DESIGN

Module-1 13FPGA BASED SYSTEM DESIGN

Module-1 14FPGA BASED SYSTEM DESIGN

Module-1 15FPGA BASED SYSTEM DESIGN

Module-1 16FPGA BASED SYSTEM DESIGN

Module-1 17FPGA BASED SYSTEM DESIGN

Data Types

Module-1 18FPGA BASED SYSTEM DESIGN

Data Types

• net
• register
• Integer

Module-1 19FPGA BASED SYSTEM DESIGN

Data Types

A variable belongs to one of two data types
Net

 Must be continuously driven
 Used to model connection between continuous assignments

and Instantiations.
Register

 Retains the last value assigned to it.
 Often used to represent storage element.

Module-1 20FPGA BASED SYSTEM DESIGN

Net Data Type

• Nets represent connections / physical wires between hardware
elements.

• Nets will not store / hold any value.

• Different net types supported for synthesis:
 wire , wor, wand, tri , supply0, supply1
 wire and tri are equivalent ; when there are multiple drivers, driving them,

the output of the drivers are shorted together.
 wor / wand inserts an OR/AND gate at the connection.
 supply0 / supply1 model power supply connections.

• Default Size : 1-bit / scalar

• Default Value : z

Net c continuously assumes the value
computed at the output of the AND gate

a

b
c

Module-1 21FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 22

• wire a; // signal ‘a’ declared as wire

• wire out; // signal ‘out’ declared as wire

Example: assign out = a | b;
or o1(out, a, b);

• wire a, b; // signals ‘a’ & ‘b’ declared as wires

• wire d = 1’b0; /*net ‘b’ is fixed to logic value ‘0’ at declaration*/

Example for wire and wand – Net data type

module wired (a,b,f);
input a,b;
output f;
wire f;
assign f= a & b;
assign f= a | b;
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 23

module wired_a (a,b,f);
input a,b;
output f;
wand f;
assign f= a & b;
assign f= a | b;
endmodule

Example for supply – Net data type

module supply_wire (a,b,c,f);
input a,b,c;
output f;
wire f;
wire t1,t2;
supply0 gnd;
supply1 vdd;
nand G1(t1,vdd,a,b);
xor G2(t2,c,gnd);
and G3(f,t1,t2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 24

Register Data Types (1/3)

 In Verilog registers represent data storage elements.

 Used to model hardware memory elements / registers.

 Registers can hold / store a value.

 Declared by the keyword reg , integer

 Default Size : 1-bit / scalar

 Default Value : x

Q

Q
SET

CLR

S

R

clk

reset

Q

Q_BAR

set

Module-1 25FPGA BASED SYSTEM DESIGN

Register Data Type (2/3)

• Different “register” types supported for synthesis
• reg,integer

 The “reg” declaration explicitly specifies the size
• reg x,y //single-bit register variable
• reg [15:0] bus; // 16-bit bus

 For “integer”, it takes the default size, usually 32-bits
 Synthesizer tries to determine the size

Module-1 26FPGA BASED SYSTEM DESIGN

Registers Data Types (3/3)

In arithmetic expression,
 An integer is treated as a 2’s complement signed integer
 A reg is treated as an unsigned quantity

General Rule
 “reg” is used to model actual hardware registers such as counters,

accumulators etc.,
 “integer” is used for situation like loop counting

 The reg declaration explicitly specifies the size either in scalar or vector
quantity.

 For integer it takes default size, usually 32-bits

Module-1 FPGA BASED SYSTEM DESIGN 27

integers

• When ‘integer’ is used, the synthesis system often carries out
a data flow analysis of the model to determine its actual size.
Example:
wire [0:9] A,B;
integer C;
C=A+B;

• The size of C can be determined to be equal to 11 (10 plus a
carry)

Module-1 28FPGA BASED SYSTEM DESIGN

Scalar and Vectors

Entities representing single bits — whether the bit is stored, changed, or
transferred — are called “scalars.”
Similarly, a group of regs stores a value, which may be assigned, changed,
and handled together. The collection here is treated as a “vector.”

Module-1 29FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 30

Nets or register data types can be declared as vectors (more no. of bits).

• If bit width is not specified then the default value is 1-bit (scalar).

wire a; // default scalar net value
wire [7:0] bus; // 8-bit bus
wire [31:0] busA, busB, busC; //32- bit bus
reg clock; // scalar register(default)
reg [0:40] virtual_addr; //virtual address 41 bits

wire[-2:2]d; /*d is a 5-bit vector with individual bits
designated as d[-2],d[-1],d[0],d[1],d[2] */

Normally vectors –nets or regs are treated as unsigned quantities. They have to
be specifically declared as “signed” if so desired.
Example: wire signed [4:0] num;

reg signed[3:0] num_1;

Module-1 FPGA BASED SYSTEM DESIGN 31

wire [15:0]busA;
busA[9]; // bit # 9 or 10th bit of vector busA from LSB

wire [0:15]busB;
busB[9]; // bit # 9 or 7th bit of vector busB from LSB

reg [31:0]cnt_out;
cnt_out[14:7]; // group of 8 bits of a vector register
cnt_out[7:14]; // is illegal addressing

Ports

• Ports provide the interface by which a module can communicate
with its environment.

• For example, the input/output pins of an IC chip are its ports.
• The environment can interact with the module only through its

ports.
• Ports are also referred to as terminals.

Module-1 32FPGA BASED SYSTEM DESIGN

Ports

All ports in the list of ports must be declared in the module. Ports
can be declared as follows:

Module-1 FPGA BASED SYSTEM DESIGN 33

Verilog Keyword Type of Port

input input port

output output port

inout bidirectional

List of Ports

Example
module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports
module Top; // No list of ports, top-level module in simulation
Module-1 34FPGA BASED SYSTEM DESIGN

Port Connection Rules

Module-1 FPGA BASED SYSTEM DESIGN 35

Port Connection Rules

• Ports provide the interface by which a module can communicate with its
environment.

• Port declarations for DFF
module DFF (dout,din,clk,resetn);
output dout;
input din,clk,resetn;

reg dout; // As the output of D Flip-Flop holds value it is declared as reg

always @(posedge clk or negedge resetn)
if (~resetn) dout<=0;
else dout<=din;

endmodule
• input or inout ports can not be of type reg, because reg variables store values;

and input ports should only reflect the changes of the external signals they
are connected to.

Module-1 36FPGA BASED SYSTEM DESIGN

