Module, Data Types and Ports

Dr.K.Sivasankaran
Associate Professor
VLSI Division
School of Electronics Engineering
VIT University

module- Definition

* Any Verilog program begins with a keyword — called a “module.”

* A moduleis the name given to any system considering it as a black box
with input and output terminals

o

w) L
| L

inout port

module adder(a,b,...p,q,...X,y);

Yy | A /
outputport{ | i mput port

» module

Module-1 FPGA BASED SYSTEM DESIGN 2

Concept of a ‘module’

* A moduleis a basic building block in Verilog and can specify a
system of any complexity.

* The module definition is the same for a system of any
complexity.

* Provides functionality through its port interface.

* It can be an element or a collection of lower-level design
(macro or leaf cells or primitive cells) blocks.

Components of a Verilog Module

Module Name,
Port List, Port Declarations (if ports present)
Parameters (optional),

Declarations of wires, Data flow statements

regs and other variables (assign)

Instantiation of lower always and initial blocks.
level modules All behavioral statements

go in these blocks.

Tasks and functions

endmodule statement

Module-1 FPGA BASED SYSTEM DESIGN 4

Components of Module

module <module name> (<module port list>);
<port type declaration>

<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< data flow level modeling>
< Behavior level modeling>
< Structural / Gate level modeling>
< Switch level modeling>

<task and functions>
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 5

How to declare a module ?

* A module in Verilog is declared using the keyword module
and a corresponding keyword endmodule must appear at

the end of the module.

e Each module must have a module name, which acts as an

identifier.

* A module can have an optional port list which describes the

input, output & inout terminals of the module.

Module-1 FPGA BASED SYSTEM DESIGN 6

Nesting of modules

[‘: .
In Verilog nesting of modules is not permitted i.e., one module definition
cannot contain another module definition within the module and
endmodule statements.

Example:

module counter(q, clk, reset);
output [3:0]q;
input clk, reset;

module T_FF(q, clock, reset) // lllegal

endmodule
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 7

Module declaration - Examples

module ex2(y,a,b,c,d);
output y;! » Module name: ex2

input a,b,c,d; > No. of ports: 5
wire f1,f2;

or 01(f1,a,b)
and al(f2,c,d);
xor x1(y,f1,f2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 8

Structural Modeling

module <module_name>
(<module_port_list>);

<port type declaration>

<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< Structural / Gate level modeling>

endmodule

module half_adder (a,b,s,c);
output s,c;

input a,b;

wire s,c;

xor (s,a,b);

and (c,a,b);

endmodule

Module-1 FPGA BASED SYSTEM DESIGN

Data Flow level Modeling

module <module_name>

: module half_adder (a,b,s,c);
(<module_port_list>);

output s,c;

<port type declaration> input a,b;
<output port data type wire s,C;
declaration> assign s=a \b;
< parameter assign c=a & b;
declaration(optional)> endmodule

//module’s body//
< data flow level modeling>

endmodule

Module-1 FPGA BASED SYSTEM DESIGN 10

Behavioral Modeling

module register (a,b,s,c);
output s,c;
module <module_name> input a,b;
(<module_port_list>); reg s,c;
always @(a,b)
begin
<output port data type declaration> if (a==0 && b==0)
< parameter declaration(optional)> begin
//module’s body// s=1’b0;
c=1'b0;
.) end
< Behavior level modeling> else if (a==1 && b==0 | | a==0 && b==1)
endmodule begin
s=1'b1;
c=1'b0;
end
else
s=1'b0;
c=1'b1;
endmodule

<port type declaration>

Module-1 FPGA BASED SYSTEM DESIGN 11

Module-1

FPGA BASED SYSTEM DESIGN

12

Structural Modeling

module <module_name> module example (a,b,c,d);
(<module_port_list>); input a,b,c,d;
<port type declaration> output y;
<output port data type declaration> wire y, wl,w2;
< i i >
parameter declaration(optional) and (w1,a,b);

and (w2,c,d);
or (y, wl,w2);
endmodule

//module’s body//
< Structural / Gate level modeling>

endmodule

Module-1 FPGA BASED SYSTEM DESIGN 13

Specification (Boolean Equation)

Y= (A.B) + (C.D)

Module-1 FPGA BASED SYSTEM DESIGN 14

Data Flow level Modeling

module <module_name>

(<module_port_list>); module example (a,b,c,d,y);
<port type declaration> input a,b,c,d;

output vy;
<output port data type wire y;
declaration> assign y=(a &b) |(b & d);
< parameter

endmodule

declaration(optional)>
//module’s body//

< data flow level modeling>
endmodule

Module-1 FPGA BASED SYSTEM DESIGN

15

Specification (Truth Table)

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Module-1 FPGA BASED SYSTEM DESIGN

16

Behavioral Modeling

module <module_name>
(<module_port_list>);

<port type declaration>

<output port data type declaration>
< parameter declaration(optional)>

//module’s body//

< Behavior level modeling>

endmodule

Module-1

module example (a,b,y);
input a,b;
outputy;
regy;
always @(a,b)
begin
if (a==1"b1l && b==1"b1)
y=1'b1;
else
y=1'b0;
end
endmodule

FPGA BASED SYSTEM DESIGN

17

Data Types

Module-1 FPGA BASED SYSTEM DESIGN 18

Data Types

°* net
* register
* |Integer

Module-1

FPGA BASED SYSTEM DESIGN

19

Data Types

A variable belongs to one of two data types
Net

» Must be continuously driven

» Used to model connection between continuous assignments
and Instantiations.

Register

» Retains the last value assigned to it.
» Often used to represent storage element.

Module-1 FPGA BASED SYSTEM DESIGN 20

Net Data Type

* Nets represent connections / physical wires between hardware
elements.

* Nets will not store / hold any value.

« Different net types supported for synthesis:
wire , wor, wand, tri , supply0, supplyl
wire and tri are equivalent ; when tllzere are multiple drivers, driving them,
the output of the drivers are shorted together.

wor / wand inserts an OR/AND gate at the connection.

supply0 / supplyl model power supply connections.

VV VV

* Default Size : 1-bit / scalar

e Default Value: z

c Net ¢ continuously assumes the value
b computed at the output of the AND gate

Module-1 FPGA BASED SYSTEM DESIGN 21

Wire declaration - Examples

wire a;

wire out;

Example:

wire a, b;

wire d = 1'b0;

Module-1

// signal ‘a’ declared as wire

// signal ‘out’ declared as wire

assignout=a | b;
or ol(out, a, b);

// signals ‘a’ & ‘b’ declared as wires

/*net ‘b’ is fixed to logic value ‘O’ at declaration*/

FPGA BASED SYSTEM DESIGN 22

Example for wire and wand — Net data type

module wired (a,b,f); module wired_a (a,b,f);
input a,b; input a,b;

output f; output f;

wire f; wand {;

assign f=a & b; assign f=a & b;

assign f=a | b; assign f=a | b;

endmodule endmodule

Module-1 FPGA BASED SYSTEM DESIGN 23

Example for supply — Net data type

module supply_wire (a,b,c,f);
input a,b,c;

output f;

wire f;

wire t1,t2;

supply0 gnd;
supplyl vdd;

nand G1(t1,vdd,a,b);
xor G2(t2,c,gnd);
and G3(f,t1,t2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 24

Register Data Types (1/3)

In Verilog registers represent data storage elements.

Registers can hold / store a value.
Declared by the keyword reg , integer
Default Size : 1-bit / scalar

X X X X X

Default Value : x

set SET

clk

reset ~ QBAR
R ar Q7

Module-1 FPGA BASED SYSTEM DESIGN

Used to model hardware memory elements / registers.

25

Register Data Type (2/3)

» Different “register” types supported for synthesis
* reg,integer
» The “reg” declaration explicitly specifies the size
* regx,y //single-bit register variable
* reg [15:0] bus; // 16-bit bus
» For “integer”, it takes the default size, usually 32-bits
» Synthesizer tries to determine the size

Module-1 FPGA BASED SYSTEM DESIGN 26

Registers Data Types (3/3)

In arithmetic expression,
» An integer is treated as a 2’s complement signed integer
» Areg is treated as an unsigned quantity

General Rule

» “reg” is used to model actual hardware registers such as counters,
accumulators etc.,

» “integer” is used for situation like loop counting

s The reg declaration explicitly specifies the size either in scalar or vector
guantity.

s For integer it takes default size, usually 32-bits

integers

* When ‘integer’ is used, the synthesis system often carries out
a data flow analysis of the model to determine its actual size.

Example:

wire [0:9] A,B;
integer C;
C=A+B;

* The size of C can be determined to be equal to 11 (10 plus a
carry)

Module-1 FPGA BASED SYSTEM DESIGN 28

Scalar and Vectors

Entities representing single bits — whether the bit is stored, changed, or
transferred — are called “scalars.”

Similarly, a group of regs stores a value, which may be assigned, changed,
and handled together. The collection here is treated as a “vector.”

| — wr & rd are scalars

wr

\ 4
rd

Circuit 1 Circuit 2
b[0]

b[1]

part vectors

4-bit-wide vector b

Module-1 FPGA BASED SYSTEM DESIGN 29

Vectors

Nets or register data types can be declared as vectors (more no. of bits).

* |f bit width is not specified then the default value is 1-bit (scalar).

wire a; // default scalar net value

wire [7:0] bus; // 8-bit bus

wire [31:0] busA, busB, busC; //32- bit bus

reg clock; // scalar register(default)

reg [0:40] virtual _addr; //virtual address 41 bits

wire[-2:2]d; /*d is a 5-bit vector with individual bits

designated as d[-2],d[-1],d[0],d[1],d[2] */
Normally vectors —nets or regs are treated as unsigned quantities. They have to
be specifically declared as “signed” if so desired.
Example: wire signed [4:0] num;
reg signed[3:0] num_1;

Module-1 FPGA BASED SYSTEM DESIGN 30

Addressing Vectors

wire [15:0]busA;
busA[9]; // bit # 9 or 10th bit of vector busA from LSB

wire [0:15]busB;
busB[9]; // bit # 9 or 7th bit of vector busB from LSB

reg [31:0]cnt_out;
cnt_out[14:7]; // group of 8 bits of a vector register
cnt_out[7:14]; // is illegal addressing

Module-1 FPGA BASED SYSTEM DESIGN 31

Ports

e Ports provide the interface by which a module can communicate
with its environment.

* For example, the input/output pins of an IC chip are its ports.

 The environment can interact with the module only through its
ports.

 Ports are also referred to as terminals.

Module-1 FPGA BASED SYSTEM DESIGN 32

Ports

All ports in the list of ports must be declared in the module. Ports
can be declared as follows:

Verilog Keyword Type of Port
input input port
output output port
inout bidirectional

Module-1 FPGA BASED SYSTEM DESIGN 33

List of Ports

Top

a - full
adder - sum

b —®| (4-bit)

c_in fulladd4 +—» C_out

Example
module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports

module Top; // No list of ports, top-level module in simulation
Module-1 FPGA BASED SYSTEM DESIGN 34

Port Connection Rules

net

Input

reg or net

Module-1

-
net

net : Inout

output

reg or net

|

FPGA BASED SYSTEM DESIGN

net

35

Port Connection Rules

* Ports provide the interface by which a module can communicate with its
environment.

* Port declarations for DFF
module DFF (dout,din,clk,resetn);
output dout;
input din,clk,resetn;

reg dout; // As the output of D Flip-Flop holds value it is declared as reg

always @(posedge clk or negedge resetn)
if (~resetn) dout<=0;
else dout<=din;

endmodule

* jnputorinout ports can not be of type reg, because reg variables store values;
and input ports should only reflect the changes of the external signals they
are connected to.

Module-1 FPGA BASED SYSTEM DESIGN 36

