
Module, Data Types and Ports

Dr.K.Sivasankaran
Associate Professor

VLSI Division
School of Electronics Engineering

VIT University

module- Definition

• Any Verilog program begins with a keyword – called a “module.”
• A module is the name given to any system considering it as a black box

with input and output terminals

Module-1 2FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 3

• A module is a basic building block in Verilog and can specify a
system of any complexity.

• The module definition is the same for a system of any
complexity.

• Provides functionality through its port interface.

• It can be an element or a collection of lower-level design
(macro or leaf cells or primitive cells) blocks.

Components of a Verilog Module

Module-1 4FPGA BASED SYSTEM DESIGN

Components of Module

module <module_name> (<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< data flow level modeling>

< Behavior level modeling>
< Structural / Gate level modeling>
< Switch level modeling>
<task and functions>
endmodule

Module-1 5FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 6

• A module in Verilog is declared using the keyword module

and a corresponding keyword endmodule must appear at

the end of the module.

• Each module must have a module name, which acts as an

identifier.

• A module can have an optional port list which describes the

input, output & inout terminals of the module.

Module-1 FPGA BASED SYSTEM DESIGN 7

In Verilog nesting of modules is not permitted i.e., one module definition
cannot contain another module definition within the module and
endmodule statements.

Example:

module counter(q, clk, reset);
output [3:0]q;
input clk, reset;

module T_FF(q, clock, reset) // Illegal
.

endmodule
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 8

module ex2(y,a,b,c,d);
output y;
input a,b,c,d;
wire f1,f2;
or o1(f1,a,b)
and a1(f2,c,d);
xor x1(y,f1,f2);
endmodule

Module name: ex2

No. of ports: 5

Structural Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//
< Structural / Gate level modeling>

endmodule

Module-1 9FPGA BASED SYSTEM DESIGN

module half_adder (a,b,s,c);
output s,c;
input a,b;

wire s,c;
xor (s,a,b);
and (c,a,b);
endmodule

Data Flow level Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type
declaration>
< parameter
declaration(optional)>

//module’s body//
< data flow level modeling>

endmodule

module half_adder (a,b,s,c);
output s,c;
input a,b;

wire s,c;
assign s=a ^b;
assign c= a & b;
endmodule

Module-1 10FPGA BASED SYSTEM DESIGN

Behavioral Modeling

module <module_name>
(<module_port_list>);
<port type declaration>
<output port data type declaration>
< parameter declaration(optional)>

//module’s body//

< Behavior level modeling>
endmodule

module register (a,b,s,c);
output s,c;
input a,b;
reg s,c;
always @(a,b)
begin
if (a==0 && b==0)
begin
s=1’b0;
c=1’b0;
end
else if (a==1 && b==0 || a==0 && b==1)
begin
s=1’b1;
c=1’b0;
end
else
s=1’b0;
c=1’b1;
endmodule

Module-1 11FPGA BASED SYSTEM DESIGN

Module-1 12FPGA BASED SYSTEM DESIGN

Module-1 13FPGA BASED SYSTEM DESIGN

Module-1 14FPGA BASED SYSTEM DESIGN

Module-1 15FPGA BASED SYSTEM DESIGN

Module-1 16FPGA BASED SYSTEM DESIGN

Module-1 17FPGA BASED SYSTEM DESIGN

Data Types

Module-1 18FPGA BASED SYSTEM DESIGN

Data Types

• net
• register
• Integer

Module-1 19FPGA BASED SYSTEM DESIGN

Data Types

A variable belongs to one of two data types
Net

 Must be continuously driven
 Used to model connection between continuous assignments

and Instantiations.
Register

 Retains the last value assigned to it.
 Often used to represent storage element.

Module-1 20FPGA BASED SYSTEM DESIGN

Net Data Type

• Nets represent connections / physical wires between hardware
elements.

• Nets will not store / hold any value.

• Different net types supported for synthesis:
 wire , wor, wand, tri , supply0, supply1
 wire and tri are equivalent ; when there are multiple drivers, driving them,

the output of the drivers are shorted together.
 wor / wand inserts an OR/AND gate at the connection.
 supply0 / supply1 model power supply connections.

• Default Size : 1-bit / scalar

• Default Value : z

Net c continuously assumes the value
computed at the output of the AND gate

a

b
c

Module-1 21FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 22

• wire a; // signal ‘a’ declared as wire

• wire out; // signal ‘out’ declared as wire

Example: assign out = a | b;
or o1(out, a, b);

• wire a, b; // signals ‘a’ & ‘b’ declared as wires

• wire d = 1’b0; /*net ‘b’ is fixed to logic value ‘0’ at declaration*/

Example for wire and wand – Net data type

module wired (a,b,f);
input a,b;
output f;
wire f;
assign f= a & b;
assign f= a | b;
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 23

module wired_a (a,b,f);
input a,b;
output f;
wand f;
assign f= a & b;
assign f= a | b;
endmodule

Example for supply – Net data type

module supply_wire (a,b,c,f);
input a,b,c;
output f;
wire f;
wire t1,t2;
supply0 gnd;
supply1 vdd;
nand G1(t1,vdd,a,b);
xor G2(t2,c,gnd);
and G3(f,t1,t2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 24

Register Data Types (1/3)

 In Verilog registers represent data storage elements.

 Used to model hardware memory elements / registers.

 Registers can hold / store a value.

 Declared by the keyword reg , integer

 Default Size : 1-bit / scalar

 Default Value : x

Q

Q
SET

CLR

S

R

clk

reset

Q

Q_BAR

set

Module-1 25FPGA BASED SYSTEM DESIGN

Register Data Type (2/3)

• Different “register” types supported for synthesis
• reg,integer

 The “reg” declaration explicitly specifies the size
• reg x,y //single-bit register variable
• reg [15:0] bus; // 16-bit bus

 For “integer”, it takes the default size, usually 32-bits
 Synthesizer tries to determine the size

Module-1 26FPGA BASED SYSTEM DESIGN

Registers Data Types (3/3)

In arithmetic expression,
 An integer is treated as a 2’s complement signed integer
 A reg is treated as an unsigned quantity

General Rule
 “reg” is used to model actual hardware registers such as counters,

accumulators etc.,
 “integer” is used for situation like loop counting

 The reg declaration explicitly specifies the size either in scalar or vector
quantity.

 For integer it takes default size, usually 32-bits

Module-1 FPGA BASED SYSTEM DESIGN 27

integers

• When ‘integer’ is used, the synthesis system often carries out
a data flow analysis of the model to determine its actual size.
Example:
wire [0:9] A,B;
integer C;
C=A+B;

• The size of C can be determined to be equal to 11 (10 plus a
carry)

Module-1 28FPGA BASED SYSTEM DESIGN

Scalar and Vectors

Entities representing single bits — whether the bit is stored, changed, or
transferred — are called “scalars.”
Similarly, a group of regs stores a value, which may be assigned, changed,
and handled together. The collection here is treated as a “vector.”

Module-1 29FPGA BASED SYSTEM DESIGN

Module-1 FPGA BASED SYSTEM DESIGN 30

Nets or register data types can be declared as vectors (more no. of bits).

• If bit width is not specified then the default value is 1-bit (scalar).

wire a; // default scalar net value
wire [7:0] bus; // 8-bit bus
wire [31:0] busA, busB, busC; //32- bit bus
reg clock; // scalar register(default)
reg [0:40] virtual_addr; //virtual address 41 bits

wire[-2:2]d; /*d is a 5-bit vector with individual bits
designated as d[-2],d[-1],d[0],d[1],d[2] */

Normally vectors –nets or regs are treated as unsigned quantities. They have to
be specifically declared as “signed” if so desired.
Example: wire signed [4:0] num;

reg signed[3:0] num_1;

Module-1 FPGA BASED SYSTEM DESIGN 31

wire [15:0]busA;
busA[9]; // bit # 9 or 10th bit of vector busA from LSB

wire [0:15]busB;
busB[9]; // bit # 9 or 7th bit of vector busB from LSB

reg [31:0]cnt_out;
cnt_out[14:7]; // group of 8 bits of a vector register
cnt_out[7:14]; // is illegal addressing

Ports

• Ports provide the interface by which a module can communicate
with its environment.

• For example, the input/output pins of an IC chip are its ports.
• The environment can interact with the module only through its

ports.
• Ports are also referred to as terminals.

Module-1 32FPGA BASED SYSTEM DESIGN

Ports

All ports in the list of ports must be declared in the module. Ports
can be declared as follows:

Module-1 FPGA BASED SYSTEM DESIGN 33

Verilog Keyword Type of Port

input input port

output output port

inout bidirectional

List of Ports

Example
module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports
module Top; // No list of ports, top-level module in simulation
Module-1 34FPGA BASED SYSTEM DESIGN

Port Connection Rules

Module-1 FPGA BASED SYSTEM DESIGN 35

Port Connection Rules

• Ports provide the interface by which a module can communicate with its
environment.

• Port declarations for DFF
module DFF (dout,din,clk,resetn);
output dout;
input din,clk,resetn;

reg dout; // As the output of D Flip-Flop holds value it is declared as reg

always @(posedge clk or negedge resetn)
if (~resetn) dout<=0;
else dout<=din;

endmodule
• input or inout ports can not be of type reg, because reg variables store values;

and input ports should only reflect the changes of the external signals they
are connected to.

Module-1 36FPGA BASED SYSTEM DESIGN

