
FPGA BASED SYSTEM DESIGNModule-1 1

Dr.K.Sivasankaran
Associate Professor,

VLSI Division
School of Electronics Engineering

VIT University

FPGA BASED SYSTEM DESIGN

 The module is implemented in terms of logic gates and

interconnections between these gates.

 All the basic gates are available as ready modules called

“Primitives.”

 Design at this level is similar to describing a design in terms of a

gate-level logic diagram.

Structural / Gate Level Modeling

Module-1 2

FPGA BASED SYSTEM DESIGN

Features:

Hardware design is described using instantiations of both

primitives as well as modules.

 Logic independent of the ordering of instantiations of both

primitives and modules.

Concurrent execution of both primitives and modules.

 Instance name is mandatory for modules but optional for

primitives.

Module-1 3

Realization of Combinational
Circuits

Module-1 4FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN
Module-1

and
nand
or
nor
xor
xnor

Verilog primitives

and / or buf / not Tri-state

buf
not

bufif0
bufif1
notif0
notif1

5

FPGA BASED SYSTEM DESIGN

 Verilog supports basic logic gates as predefined primitives.

 These primitives are instantiated like modules except that they
are predefined in Verilog.

 No module definition is needed for using the primitives.

Module-1 6

FPGA BASED SYSTEM DESIGN

Features:
1-output, multiple inputs.
Output transitions (0, 1, x).

7

and i1 (output, input_1, input_2, …, input_n);

nand i2 (output, input_1, input_2, …, input_n);

or i3 (output, input_1, input_2, …, input_n);

nor i4 (output, input_1, input_2, …, input_n);

xor i5 (output, input_1, input_2, …, input_n);

xnor i6 (output, input_1, input_2, …, input_n);

Module-1

FPGA BASED SYSTEM DESIGN

Features:

• 1-input, multiple outputs.

• Output transitions (0, 1, x).

buf i1 (output_1, output_2, …, output_n, input);

not i2 (output_1, output_2, …, output_n, input);

Module-1 8

FPGA BASED SYSTEM DESIGN

Features:
• Has only 3 terminals.
• Output transitions (0, 1, x, z).

bufif0 i1 (output, data input, control input);

bufif1 i2 (output, data input, control input);

notif0 i3 (output, data input, control input);

notif1 i4 (output, data input, control input);

Module-1 9

Instantiation and functional details of tri-state buffer
primitives

Module-1 10FPGA BASED SYSTEM DESIGN

Module-1 11FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGNModule-1 12

Basic gate primitives in Verilog with details

Module-1 13FPGA BASED SYSTEM DESIGN

Rules for deciding the output values of gate
primitives for different input combinations

Module-1 14FPGA BASED SYSTEM DESIGN

Array of Instances of primitives

The primitives available in Verilog can also be instantiated as arrays.

A judicious use of such array instantiations often leads to compact design descriptions.

A typical array instantiation has the form

and gate [7 : 4] (a, b, c);

where a, b, and c are to be 4 bit vectors.

The above instantiation is equivalent to combining the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1],
c[1]), gate [4] (a[0], b[0], c[0]);

Module-1 15FPGA BASED SYSTEM DESIGN

Example – Array of Instance

In the general case the array size is specified in terms of two constant expressions.
These can involve constants, previously defined parameters and algebraic operators:

Such an instantiation can have a form as
and gate [offset*2+size-1: offset*2] (a, b, c);

Module-1 16FPGA BASED SYSTEM DESIGN

Realize 4-bit Ripple Carry Full Adder

Module-1 17FPGA BASED SYSTEM DESIGN

Realization of Sequential Circuits

Module-1 18FPGA BASED SYSTEM DESIGN

RS Latch

Module-1 19FPGA BASED SYSTEM DESIGN

module sbrbff(sb,rb,q,qb);
input sb,rb;
output q,qb;
nand(q,sb,qb);
nand(qb,rb,q);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 20

RS Flip Flop

module srff(cp,s,r,q,qb);
input cp,s,r;
output q,qb;
wire ss,rr;
nand (ss,s,cp),(rr,r,cp),(q,ss,qb),(qb,rr,q);
endmodule

Master-Slave JK-flipflop

Module-1 21FPGA BASED SYSTEM DESIGN

Edge Triggered Flip-Flop

Module-1 22FPGA BASED SYSTEM DESIGN

Net Delay

One of the simplest delays is that of a direct connection – a net. It can be part of
the declaration statement
wire #2 nn; // nn is declared as a net with a propagation delay of 2 time steps
wire # (2, 1) nm; //nm is declared as net with rise delay of 2t.u and fall delay of 1t.u

module
netdelay(x,y);
input x;
output y;
wire #2 nn;
not (nn,x);
buf y = x; //
endmodule

Module-1 23FPGA BASED SYSTEM DESIGN

Gate Delays

• Rise delay is associated with a gate output transition to 1 from another value

• Fall delay is associated with a gate output transition to 0 from another value

• Turn-off delay is associated with a gate output transition to the high
impedance value (z) from another value

t_fall

t_rise

Module-1 24FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN

• One delay specification: If specified, it is used for all transitions.
and #(delay time) a1 (out, i1, i2);
and #(4) a1 (out, i1, i2);

• Two delay specification: If specified, they refer to rise and fall times.
or #(rise_del, fall_del) o1 (out, i1, i2);
or #(5, 6) o1 (out, i1, i2);

• Three delay specification: If specified, they refer to rise, fall and turn-
off times.

bufif1 #(rise_del, fall_del, turn_off_del) b1 (out, in, cnt);
bufif1 #(2, 3, 5) b1 (out, in, crtl);

25Module-1

FPGA BASED SYSTEM DESIGN

 Primitive gate delays allow three values each for the rise, fall
and turn-off delays.

 The three values are minimum, typical and maximum, and the
three are separated by colons.

 Either of the three values can be selected at the start of the
simulation (run time). If no value is selected, typical value is
the default.

Module-1 26

FPGA BASED SYSTEM DESIGN

• One delay specification with min:typ:max values.

and #(2:4:5) a1 (out, i1, i2);
risemin,fallmin = 2, risetyp,falltyp = 4, risemax,fallmax = 5.

• Two delay specification with min:typ:max values.
or #(1:5:3, 2:6:4) o1 (out, i1, i2);
risemin=1, risetyp=5, risemax=3, fallmin=2, falltyp=6, fallmax=4.

• Three delay specification with min:typ:max values.
bufif1 #(1:2:4, 1:3:5, 3:5:6) b1 (out, i1, i2);
risemin=1, risetyp=2, risemax=4, fallmin=1, falltyp=3, fallmax=5, turn-
offmin=3, turn-offtyp=5, turn-offmax=6.

Module-1 27

Example - Primitive Instantiation

Module-1 FPGA BASED SYSTEM DESIGN 28

module mux4_to_1 (out, i0, i1, i2, i3,
s1, s0);

output out;
input i0, i1, i2, i3;
input s1, s0;
wire s1n, s0n;
wire y0, y1, y2, y3;
not (s1n, s1);

Module-1 FPGA BASED SYSTEM DESIGN 29

Primitive Instantiation - Example

not (s0n, s0);
and (y0, i0, s1n, s0n);
and (y1, i1, s1n, s0);
and (y2, i2, s1, s0n);
and (y3, i3, s1, s0);
or (out, y0, y1, y2, y3);
endmodule

// Module 4-to-1 multiplexer. Port list is taken exactly from the I/O diagram.

Module Instantiation - Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 30

module frmux (a,b,c,d,se1,se2,y);

input a,b,c,d,se1,se2;

output y;

wire y,se1,se2,w1,w2;

twmux t1(a,b,se2,w1);

twmux t2(c,d,se1,w2);

twmux t3(w1,w2,se1,y);

endmodule

Connecting Ports to External Signals

• There are two methods of making connections between

signals specified in the module instantiation and the

ports in a module definition. These two methods cannot

be mixed.
– Connecting by ordered list
– Connecting ports by name

Module-1 FPGA BASED SYSTEM DESIGN 31

Connecting by ordered list

• Connecting by ordered list is the most intuitive method
for most beginners.

• The signals to be connected must appear in the module
instantiation in the same order as the ports in the port
list in the module definition

Module-1 FPGA BASED SYSTEM DESIGN 32

Connecting by ordered list-Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 33

module frmux (a,b,c,d,se1,se2,y);

input a,b,c,d,se1,se2;

output y;

wire y,w1,w2;

twmux t1(a,b,se1,w1);

twmux t2(c,d,se1,w2);

twmux t3(w1,w2,se2,y);

endmodule

Connecting Ports by name

• For large designs where modules have, say, 50 ports,

remembering the order of the ports in the module

definition is impractical and error-prone.

• Verilog provides the capability to connect external

signals to ports by the port names, rather than by

position.

Module-1 FPGA BASED SYSTEM DESIGN 34

Connecting Ports by name -Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 35

module frmux (a,b,c,d,se1,se2, y);

input a,b,c,d,se1,se2;

output y;

wire y, w1,w2;

twmux t1(.a(a), .b(b), .s(se1), .y(w1));

twmux t2(.a (c), .b(d), .s(se1), .y(w2));

twmux t3(.a(w1), .b(w2), .s(se2), .y(y));

endmodule

