STRUCTURAL /GATE LEVEL
MODELING

Dr.K.Sivasankaran
Associate Professor,
VLSI Division
School of Electronics Engineering
VIT University

Module-1 FPGA BASED SYSTEM DESIGN 1

Structural / Gate Level Modeling

» The module is implemented in terms of logic gates and
interconnections between these gates.

» All the basic gates are available as ready modules called
“Primitives.”

» Design at this level is similar to describing a design in terms of a

gate-level logic diagram.

Structural / Gate Level Modeling

Features:
» Hardware design is described using instantiations of both
primitives as well as modules.
» Logic independent of the ordering of instantiations of both
primitives and modules.
» Concurrent execution of both primitives and modules.
» Instance name is mandatory for modules but optional for

primitives.

Realization of Combinational
Circuits

Classification of primitives

Verilog primitives

Tri-state

bufif0
bufifl
notif0
notifl

FPGA BASED SYSTEM DESIGN 5

Verilog Logic Gate Primitives

> Verilog supports basic logic gates as predefined primitives. ”

» These primitives are instantiated like modules except that they
are predefined in Verilog.

» No module definition is needed for using the primitives.

11— i i1 — .
2 — ou 2 —l ou

and nand

i i1
i2 ﬂout 2 _wout

or nor

i] o

xor xnor

Module-1 FPGA BASED SYSTEM DESIGN 6

Primitive gates

Features:
1-output, multiple inputs.
Output transitions (0, 1, x).

and il (output, input_1, input_2, ..., input_n);
nand i2 (output, input_1, input_2, ..., input_n);
or i3 (output, input_1, input_2, ..., input_n);
nor i4 (output, input_1, input_2, ..., input_n);
xor i5 (output, input_1, input_2, ..., input_n);

xnor i6 (output, input_1, input_2, ..., input_n);

buf / not primitives

Features:
1-input, multiple outputs.

Output transitions (0, 1, x).

n ‘ > out in \ >C out

buf not

buf il (output_1, output_2, ..., output_n, input);

not i2 (output_1, output_2, ..., output_n, input);

Module-1 FPGA BASED SYSTEM DESIGN 8

Tri-state Primitives

Features:
Has only 3 terminals.

Output transitions (0, 1, x,

in %)
ctrl

bufifl

in I\ out

bufif0

bufif0 i1 (output, data input, control input);

bufifl i2 (output, data input, control input);

notif0 i3 (output, data input, control input);

notifl i4 (output, data input, control input);

Module-1

FPGA BASED SYSTEM DESIGN

notifl
in %ut
ctrl
notifl)

Instantiation and functional details of tri-state buffer ;
_primitives

A

o <
»

TG
Typical instantiation Functional representation Functional description
in out
bufifl (out,in. Out = in if control = 1; else
control); out =z
control
in out
bufif0 (out,in, Out = in if control = 0; else
control); out =z
control
i.n out
notifl (out, in, Out = complement of'in
control); if control = 1; else out =2z
control
in out
notif0 (out, in, Out = complement of in
control); if control =0; else out =z
control

Module-1 FPGA BASED SYSTEM DESIGN 10

AND / OR PRIMITIVES TRUTH TABLE

and 0 1 X z or 0 1 X z
0 0 O §) O 0 0 1 x X
1 O 1 X X 1 1 1 1 1
x 0O X X X x X 1 X X
7 O X X X 7 x 1 X X

nand 0 1 X z nor 0 1 X z

0 1 1 1 1 0 1 O X X
1 1 0 x X 1 0 O 0 0
X 1 x x x x X O X X
z I X X X 7 X O x X

Module-1 FPGA BASED SYSTEM DESIGN 11

BUF / NOT PRIMITIVES TRUTH TABLE

buf not
input output input output
0 0 0 I
I 1 1 0
X X X X
Z X z X

Module-1 FPGA BASED SYSTEM DESIGN 12

Basic gate primitives in Verilog with details

Gate Mode of instantiation Output port(s) [nput port(s)

AND (andga(o,i1,i2,...i8); 0 i1,i2, ..
OR |orgr(o,il,i2, ...i8) 0 11,12, ..
NAND |nandgna(o,if,i2,...i8); 0 i1,12, ..
NOR |norgnr(o,il,i2, ...i8) 0 i1,i2, ..
XOR [xorgxr(o,il,i2,...i8); 0 11,12, ..
XNOR |xnorgxn(o,il,i2,...i8); 0 11,12, ..
BUF |buf gb(o01,02,....0); 01,02, 03, .. i

NOT [notgn (01,02, 03,...1) 01,02, 03, .. i

Module-1 FPGA BASED SYSTEM DESIGN 13

Rules for deciding the output values of gate

primitives for different input combinations

Type of gate 0 output state | output state x output state
AND Any one of the All the inputs are at one
inputs 1s zero
All the inputs are at [Any one of the inputs is
NAND -
one ZeT0 All other cases
. - . . Qa. .
OR All the inputs are at |Any one of the inputs is
Zero one
NOR ,f\ny one of the All the inputs are at
Inputs 1s one ZCro
XOR If every one of the inputs is definite at zero or [If any one of the inputs is
one, the output is zero or one as decided by at x or z state, the output is
BUF If the only input is at |If the only input is at 1
0 state state All other cases of inputs
NOT If the only input is at [If the only input is at 0 ‘
| state state
Module-1 FPGA BASED SYSTEM DESIGN 14

Array of Instances of primitives

The primitives available in Verilog can also be instantiated as arrays.
A judicious use of such array instantiations often leads to compact design descriptions.
A typical array instantiation has the form

and gate[7:4](a, b, c);

where a, b, and c are to be 4 bit vectors.
The above instantiation is equivalent to combining the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1],
c[1]), gate [4] (a[0], b[O], c[0]);

Module-1 FPGA BASED SYSTEM DESIGN 15

Example — Array of Instance

D

a[6] gl[6]
b[6]

o N "

dd

cn

b
module comp(d,a,b,en);
input en;
input(7:0]a,b;
output d;
wire [7:0]c;
wire dd;
xor gl[7:0] (¢c,b,a);

r (dd, c) ;
notifl (d,dd,en);
endmodule

In the general case the array size is specified in terms of two constant expressions.
These can involve constants, previously defined parameters and algebraic operators:

Such an instantiation can have a form as
and gate [offset*2+size-1: offset*2] (a, b, c);

Module-1

FPGA BASED SYSTEM DESIGN 16

Realize 4-bit Ripple Carry Full Adder

a[0] b[0] a[1] bl!] a[2] b(2) a[3] b[3]
B e R
| |
o full | ¢ full | ¢ full | 3 full | | c_out
C_lll—|> adder [——®»r adder |~—® adder ——® adder | >
| fa0 fal | fa2 fa3
S — % _____ | _____ # — — — |
sum|[0] sum(1] sum|2] sum|3]

Module-1 FPGA BASED SYSTEM DESIGN 17

Realization of Sequential Circuits

Module-1 FPGA BASED SYSTEM DESIGN 18

RS Latch

module sbrbff(sb,rb,q,qb);
input sb,rb;

output q,qb;
nand(q,sb,qb);
nand(qb,rb,q);
endmodule

[>q

Module-1 FPGA BASED SYSTEM DESIGN 19

RS Flip Flop

X8 ix7

i X0) ‘
r D fn oLt in| "y~ 0ut ir'||0|ﬁ- _ x15
in[1] / P = >0ul m‘ “;Dcoul
m[“l]—-\ix1 X3 ix9 i ; ;
\out In _\}GM |nm¥\ _ ',)(11 __qb
In[Q] W - _ out 0|~~~ out
s — it P
cp[— _

module srff(cp,s,r,q,qb);

input cp,s,r;

output q,gb;

wire ss,rr;

nand (ss,s,cp),(rr,r,cp),(q,ss,qb),(gb,rr,q);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 20

Master-Slave JK-flipflop

L
" B
——q
[<
clear
43
* qbar
K) S— D)d_
|_
clock ' Dc prv

Module-1 FPGA BASED SYSTEM DESIGN 21

Edge Triggered Flip-Flop

e — — — — — —

e —— ——— ——

22

FPGA BASED SYSTEM DESIGN

Module-1

Net Delay

One of the simplest delays is that of a direct connection —a net. It can be part of

the declaration statement
wire #2 nn; // nn is declared as a net with a propagation delay of 2 time steps
wire # (2, 1) nm; //nm is declared as net with rise delay of 2t.u and fall delay of 1t.u

ﬁ Net nn
x@® oy
(a)

Circuit 1 Circuit 2 module

t _ _ netdelay(x,y);
Common ground line .

iInput x;

output vy;
wire #2 nn;
not (nn,x);
bufy =x; //

(b) endmodule

“ —p

vl
;
'
;

«(__>

0 5 10

Time steps —»
Module-1 FPGA BASED SYSTEM DESIGN 23

Gate Delays

Rise delay is associated with a gate output transition to 1 from another value

< »
< »

t rise
Fall delay is associated with a gate output transition to O from another value

<

t fall

* Turn-off delay is associated with a gate output transition to the high
impedance value (z) from another value

Module-1 FPGA BASED SYSTEM DESIGN 24

Gate delay specifications

One delay specification: If specified, it is used for all transitions.

and #(delay time) al (out, i1, i2); -
and #(4) al (out, i1, i2); o >

Two delay specification: If specified, they refer to rise and fall times.
or #(rise_del, fall_del) ol (out, i1, i2);

or #(5, 6) ol (out, i1, i2); D

Three delay specification: If specified, they refer to rise, fall and turn-

off times.
bufifl #(rise_del, fall_del, turn_off_del) b1 (out, in, cnt);
bufifl #(2, 3, 5) bl (out, in, crtl); _

=
P
-

Module-1 FPGA BASED SYSTEM DESIGN eer 75

MIN : TYP : MAX VALUES

Primitive gate delays allow three values each for the rise, fall

and turn-off delays.

» The three values are minimum, typical and maximum, and the

three are separated by colons.

» Either of the three values can be selected at the start of the
simulation (run time). If no value is selected, typical value is
the default.

Module-1 FPGA BASED SYSTEM DESIGN 26

EXAMPLES OF MIN : TYP : MAX VALUES

One delay specification with min:typ:max values.
and #(2:4:5) al (out, i1, 12);

riseyin fall i, = 2, rise, fall,, = 4, rise,,, fall = 5.

min’/ max’/

typ

* Two delay specification with min:typ:max values.
or #(1:5:3, 2:6:4) ol (out, 11, i2);

rise,,=1, rise,,,=5, rise,,=3, fall;,=2, fall,, =6, fall,, =4.

* Three delay specification with min:typ:max values.
bufifl #(1:2:4, 1:3:5, 3:5:6) bl (out, i1, i2);

rise,,,=1, rise,,,=2, rise,,=4, fall,;,=1, fall,, =3, fall,,=5, turn-

typ

off . =3, turn-off, =5, turn-off__ =6.

typ

Module-1 FPGA BASED SYSTEM DESIGN 27

Example - Primitive Instantiation

0 —p
. sl sO | out
= ol
2 — | Mu — out 0 o400)
. 0 1 |n r |
i3 —p i0 : ™ Y0 |
| 0 12 : J :
|
| |
? ? I I3 i1 —} N\ y1 :
| | —
sl s0 | :
' — B+
i2 : y2 |
I l
. — |
|
i3 : N y3 :
. — I
: sin sOn I
|
|
A A |
|
si : |
H |
s0 |
L J

Module-1 FPGA BASED SYSTEM DESIGN 28

Primitive Instantiation - Example

// Module 4-to-1 multiplexer. Port list is taken exactly from the I/O diagram.

module mux4_to_1 (out, i0, i1, i2, i3, not (sOn, s0);
s1, s0); and (y0, i0, s1n, sOn);
output out; and (y1, %1, sln, sO);
input i0, i1, i2, i3; and gé ey 28;1)
input s1, s0; or (out, y0, y1, y2, y3);
endmodule

wire sln, sOn;
wire y0, y1, y2, y3;
not (sln, s1);

Module-1 FPGA BASED SYSTEM DESIGN 29

Module Instantiation - Example

module twmux (a,b,s,y); module frmux (a,b,c,d,sel,se2,y);

input a,b,s; input a,b,c,d,sel,se2;
outputy; output y;

wire y,s1,wl,w2; :
wire y,sel,se2,wl,w2;

not n1(sl,s);

and al(wl,a,9); twmux tl(a,b,se2,w1l);
and a2 (w2,b,s1); twmux t2(c,d,sel,w2);
or ol(y,wl,w2); twmux t3(wl,w2,sel,y);
endmodule

endmodule

Module-1 FPGA BASED SYSTEM DESIGN 30

Connecting Ports to External Signals

* There are two methods of making connections between
signals specified in the module instantiation and the
ports in a module definition. These two methods cannot

be mixed.

— Connecting by ordered list
— Connecting ports by name

Connecting by ordered list

* Connecting by ordered list is the most intuitive method
for most beginners.

* The signals to be connected must appear in the module
instantiation in the same order as the ports in the port
list in the module definition

Module-1 FPGA BASED SYSTEM DESIGN 32

Connecting by ordered list-Example

module twmux (a,b,s,y); module frmux (a,b,c,d,sel,se2,y);

input a,b,s; input a,b,c,d,sel,se2;

outputy; output y;

wire y,s1,wl,w2; :
wire y,w1l,w2;

not n1(sl,s);

and al(wl,a,s); twmux tl(a,b,sel,wl);
and a2 (w2,b,s1); twmux t2(c,d,sel,w2);
or ol(y,wl,w2); twmux t3(wl,w2,se2,y);
endmodule

endmodule

Module-1 FPGA BASED SYSTEM DESIGN 33

Connecting Ports by name

* For large designs where modules have, say, 50 ports,
remembering the order of the ports in the module

definition is impractical and error-prone.

* Verilog provides the capability to connect external
signals to ports by the port names, rather than by

position.

Connecting Ports by name -Example

module twmux (a,b,s,y); module frmux (a,b,c,d,sel,se2, y);

input a,b,s; input a,b,c,d,sel,se2;
output y; output y;
wire y,s1,wl,w2;
not n1(s1,s);

and al(wl,a,s);

wire y, wl,w2;

twmux tl(.a(a), .b(b), .s(sel), .y(wl));

and a2 (w2,b,s1); twmux t2(.a (c), .b(d), .s(sel), .y(w2));
or ol(y,wl,w2); twmux t3(.a(w1), .b(w2), .s(se2), .y(y));
endmodule

endmodule

Module-1 FPGA BASED SYSTEM DESIGN 35

