
FPGA BASED SYSTEM DESIGNModule-1 1

Dr.K.Sivasankaran
Associate Professor,

VLSI Division
School of Electronics Engineering

VIT University

FPGA BASED SYSTEM DESIGN

 The module is implemented in terms of logic gates and

interconnections between these gates.

 All the basic gates are available as ready modules called

“Primitives.”

 Design at this level is similar to describing a design in terms of a

gate-level logic diagram.

Structural / Gate Level Modeling

Module-1 2

FPGA BASED SYSTEM DESIGN

Features:

Hardware design is described using instantiations of both

primitives as well as modules.

 Logic independent of the ordering of instantiations of both

primitives and modules.

Concurrent execution of both primitives and modules.

 Instance name is mandatory for modules but optional for

primitives.

Module-1 3

Realization of Combinational
Circuits

Module-1 4FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN
Module-1

and
nand
or
nor
xor
xnor

Verilog primitives

and / or buf / not Tri-state

buf
not

bufif0
bufif1
notif0
notif1

5

FPGA BASED SYSTEM DESIGN

 Verilog supports basic logic gates as predefined primitives.

 These primitives are instantiated like modules except that they
are predefined in Verilog.

 No module definition is needed for using the primitives.

Module-1 6

FPGA BASED SYSTEM DESIGN

Features:
1-output, multiple inputs.
Output transitions (0, 1, x).

7

and i1 (output, input_1, input_2, …, input_n);

nand i2 (output, input_1, input_2, …, input_n);

or i3 (output, input_1, input_2, …, input_n);

nor i4 (output, input_1, input_2, …, input_n);

xor i5 (output, input_1, input_2, …, input_n);

xnor i6 (output, input_1, input_2, …, input_n);

Module-1

FPGA BASED SYSTEM DESIGN

Features:

• 1-input, multiple outputs.

• Output transitions (0, 1, x).

buf i1 (output_1, output_2, …, output_n, input);

not i2 (output_1, output_2, …, output_n, input);

Module-1 8

FPGA BASED SYSTEM DESIGN

Features:
• Has only 3 terminals.
• Output transitions (0, 1, x, z).

bufif0 i1 (output, data input, control input);

bufif1 i2 (output, data input, control input);

notif0 i3 (output, data input, control input);

notif1 i4 (output, data input, control input);

Module-1 9

Instantiation and functional details of tri-state buffer
primitives

Module-1 10FPGA BASED SYSTEM DESIGN

Module-1 11FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGNModule-1 12

Basic gate primitives in Verilog with details

Module-1 13FPGA BASED SYSTEM DESIGN

Rules for deciding the output values of gate
primitives for different input combinations

Module-1 14FPGA BASED SYSTEM DESIGN

Array of Instances of primitives

The primitives available in Verilog can also be instantiated as arrays.

A judicious use of such array instantiations often leads to compact design descriptions.

A typical array instantiation has the form

and gate [7 : 4] (a, b, c);

where a, b, and c are to be 4 bit vectors.

The above instantiation is equivalent to combining the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1],
c[1]), gate [4] (a[0], b[0], c[0]);

Module-1 15FPGA BASED SYSTEM DESIGN

Example – Array of Instance

In the general case the array size is specified in terms of two constant expressions.
These can involve constants, previously defined parameters and algebraic operators:

Such an instantiation can have a form as
and gate [offset*2+size-1: offset*2] (a, b, c);

Module-1 16FPGA BASED SYSTEM DESIGN

Realize 4-bit Ripple Carry Full Adder

Module-1 17FPGA BASED SYSTEM DESIGN

Realization of Sequential Circuits

Module-1 18FPGA BASED SYSTEM DESIGN

RS Latch

Module-1 19FPGA BASED SYSTEM DESIGN

module sbrbff(sb,rb,q,qb);
input sb,rb;
output q,qb;
nand(q,sb,qb);
nand(qb,rb,q);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 20

RS Flip Flop

module srff(cp,s,r,q,qb);
input cp,s,r;
output q,qb;
wire ss,rr;
nand (ss,s,cp),(rr,r,cp),(q,ss,qb),(qb,rr,q);
endmodule

Master-Slave JK-flipflop

Module-1 21FPGA BASED SYSTEM DESIGN

Edge Triggered Flip-Flop

Module-1 22FPGA BASED SYSTEM DESIGN

Net Delay

One of the simplest delays is that of a direct connection – a net. It can be part of
the declaration statement
wire #2 nn; // nn is declared as a net with a propagation delay of 2 time steps
wire # (2, 1) nm; //nm is declared as net with rise delay of 2t.u and fall delay of 1t.u

module
netdelay(x,y);
input x;
output y;
wire #2 nn;
not (nn,x);
buf y = x; //
endmodule

Module-1 23FPGA BASED SYSTEM DESIGN

Gate Delays

• Rise delay is associated with a gate output transition to 1 from another value

• Fall delay is associated with a gate output transition to 0 from another value

• Turn-off delay is associated with a gate output transition to the high
impedance value (z) from another value

t_fall

t_rise

Module-1 24FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN

• One delay specification: If specified, it is used for all transitions.
and #(delay time) a1 (out, i1, i2);
and #(4) a1 (out, i1, i2);

• Two delay specification: If specified, they refer to rise and fall times.
or #(rise_del, fall_del) o1 (out, i1, i2);
or #(5, 6) o1 (out, i1, i2);

• Three delay specification: If specified, they refer to rise, fall and turn-
off times.

bufif1 #(rise_del, fall_del, turn_off_del) b1 (out, in, cnt);
bufif1 #(2, 3, 5) b1 (out, in, crtl);

25Module-1

FPGA BASED SYSTEM DESIGN

 Primitive gate delays allow three values each for the rise, fall
and turn-off delays.

 The three values are minimum, typical and maximum, and the
three are separated by colons.

 Either of the three values can be selected at the start of the
simulation (run time). If no value is selected, typical value is
the default.

Module-1 26

FPGA BASED SYSTEM DESIGN

• One delay specification with min:typ:max values.

and #(2:4:5) a1 (out, i1, i2);
risemin,fallmin = 2, risetyp,falltyp = 4, risemax,fallmax = 5.

• Two delay specification with min:typ:max values.
or #(1:5:3, 2:6:4) o1 (out, i1, i2);
risemin=1, risetyp=5, risemax=3, fallmin=2, falltyp=6, fallmax=4.

• Three delay specification with min:typ:max values.
bufif1 #(1:2:4, 1:3:5, 3:5:6) b1 (out, i1, i2);
risemin=1, risetyp=2, risemax=4, fallmin=1, falltyp=3, fallmax=5, turn-
offmin=3, turn-offtyp=5, turn-offmax=6.

Module-1 27

Example - Primitive Instantiation

Module-1 FPGA BASED SYSTEM DESIGN 28

module mux4_to_1 (out, i0, i1, i2, i3,
s1, s0);

output out;
input i0, i1, i2, i3;
input s1, s0;
wire s1n, s0n;
wire y0, y1, y2, y3;
not (s1n, s1);

Module-1 FPGA BASED SYSTEM DESIGN 29

Primitive Instantiation - Example

not (s0n, s0);
and (y0, i0, s1n, s0n);
and (y1, i1, s1n, s0);
and (y2, i2, s1, s0n);
and (y3, i3, s1, s0);
or (out, y0, y1, y2, y3);
endmodule

// Module 4-to-1 multiplexer. Port list is taken exactly from the I/O diagram.

Module Instantiation - Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 30

module frmux (a,b,c,d,se1,se2,y);

input a,b,c,d,se1,se2;

output y;

wire y,se1,se2,w1,w2;

twmux t1(a,b,se2,w1);

twmux t2(c,d,se1,w2);

twmux t3(w1,w2,se1,y);

endmodule

Connecting Ports to External Signals

• There are two methods of making connections between

signals specified in the module instantiation and the

ports in a module definition. These two methods cannot

be mixed.
– Connecting by ordered list
– Connecting ports by name

Module-1 FPGA BASED SYSTEM DESIGN 31

Connecting by ordered list

• Connecting by ordered list is the most intuitive method
for most beginners.

• The signals to be connected must appear in the module
instantiation in the same order as the ports in the port
list in the module definition

Module-1 FPGA BASED SYSTEM DESIGN 32

Connecting by ordered list-Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 33

module frmux (a,b,c,d,se1,se2,y);

input a,b,c,d,se1,se2;

output y;

wire y,w1,w2;

twmux t1(a,b,se1,w1);

twmux t2(c,d,se1,w2);

twmux t3(w1,w2,se2,y);

endmodule

Connecting Ports by name

• For large designs where modules have, say, 50 ports,

remembering the order of the ports in the module

definition is impractical and error-prone.

• Verilog provides the capability to connect external

signals to ports by the port names, rather than by

position.

Module-1 FPGA BASED SYSTEM DESIGN 34

Connecting Ports by name -Example

module twmux (a,b,s,y);
input a,b,s;
output y;
wire y,s1,w1,w2;
not n1(s1,s);
and a1(w1,a,s);
and a2 (w2,b,s1);
or o1(y,w1,w2);
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 35

module frmux (a,b,c,d,se1,se2, y);

input a,b,c,d,se1,se2;

output y;

wire y, w1,w2;

twmux t1(.a(a), .b(b), .s(se1), .y(w1));

twmux t2(.a (c), .b(d), .s(se1), .y(w2));

twmux t3(.a(w1), .b(w2), .s(se2), .y(y));

endmodule

