
FPGA BASED SYSTEM DESIGNModule-1 1

Dr.K.Sivasankaran
Associate Professor

VLSI Division
School of Electronics Engineering

VIT University

Dataflow Modeling (1/2)

• Gate level Modeling approach works well for small circuits
but not for complex designs.

• Designers can design more effectively if they concentrate on
implementing the function at a level of abstraction higher
than gate level.

• Dataflow modeling provides a powerful way to implement a
design.

• Verilog allows a circuit to be designed in terms of the data
flow between registers and how a design processes data
rather than instantiation of individual gates.

Module-1 2FPGA BASED SYSTEM DESIGN

Dataflow Modeling (2/2)

• With gate densities on chips increasing rapidly, dataflow
modeling has assumed great importance.

• Currently, automated tools are used to create a gate-level
circuit from a dataflow design

• . This process is called logic synthesis.
• The data flow modeling allows the designer to concentrate on

optimizing the circuit in terms of data flow.
• In the digital design community, the term RTL (Register

Transfer Level) design is commonly used for a combination of
dataflow modeling and behavioral modeling.

Module-1 3FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN

• This level of abstraction level resembles like that of boolean

equation representation of digital systems.

• The dataflow assignments are called “Continuous

Assignments”.

• Continuous assignments are always active.

• Syntax: assign #(delay) target = expression;

• A Verilog module can contain any number of continuous

assignment statements, and all staements execute

concurrently.

Module-1 4

FPGA BASED SYSTEM DESIGN

• LHS target -> always a net, not a register.

• RHS -> registers, nets or function calls.

• Delay values can be specified in terms of time units.

• Whenever an event (change of value) occurs on any operand used

on the RHS of an expression, the expression is evaluated and

assigned to the LHS target.

Module-1 5

FPGA BASED SYSTEM DESIGN

• Regular continuous assignment.

wire mux_out;
assign mux_out = sel_in ? b_in : a_in;

• Implicit continuous assignment.

wire mux_out = sel_in ? b_in : a_in;

Module-1 6

Realizing Using Multiple Continuous
Assignment Statement

module aoi2(g,a,b,c,d);
output g;
input a,b,c,d;
wire e,f,g1,g;
assign e = a & b;
assign f = c & d;
assign g1 = e | f;
assign g = ~g1;
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 7

Realizing Using Single Continuous Assignment
Statement

module aoi2(g,a,b,c,d);
output g;
input a,b,c,d;
wire e,f,g1,g;
assign e = a & b,f = c & d, g1 = e|f, g=~g1;
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 8

Realizing using Implicit assignment Statement

module aoi3(g,a,b,c,d);
output g;
input a,b,c,d;
wire g;
wire e = a & b;
wire f = c & d;
wire g1 = e|f;
assign g = ~g1;
endmodule

Module-1 FPGA BASED SYSTEM DESIGN 9

Assignment to Vectors

The continuous assignments are equally applicable to vectors.

A single statement can describe operations involving vectors wherever
possible.

module add_8(a,b,c);
input[7:0]a,b;
output[7:0]c;
assign c = a + b ;
endmodule

Module-1 10FPGA BASED SYSTEM DESIGN

Concatenation of Vectors

One can concatenate vectors, scalars, and part vectors to form other vectors.

The concatenated vector is enclosed within braces.

Commas separate the components –scalars, vectors, and part vectors.
If a and b are 8- and 4-bit wide vectors, respectively and c is a scalar

{a, b, c}

stands for a concatenated vector of 13 bits width.

module add_8_c(c,cco,a,b,cci);
input[7:0]a,b;
output[7:0]c;
input cci;
output cco;
assign {cco,c} = (a + b + cci);
endmodule

Module-1 11FPGA BASED SYSTEM DESIGN

Example – Mux Inference

module generate_mux
(data,select,out);

input [0:7] data;
input [0:2]select;
output out;
wire out;
assign out = data[select];
endmodule

Note: Non- constant index in expression on RHS generates MUX

OUT
MUXD

A
T
A

SELECT

Module-1 12FPGA BASED SYSTEM DESIGN

Example – Decoder Inference

module generate decoder
(data,select,out);

input data;
input [0:1]select;
output [0:3] out;
wire [0:3] out;
assign out[select]=data;
endmodule

Note: Non- constant index in expression on LHS generates DECODER

OUT

DECODERD
A
T
A

SELECT

Module-1 13FPGA BASED SYSTEM DESIGN

Example

module generate_mux
(a,b,f,s);

input a,b;
input s;
output f;
wire f;
assign f = s? a : b;
endmodule

Note: Conditional Operator generate MUX

fMUX
a

s

b

Module-1 14FPGA BASED SYSTEM DESIGN

Example

module latch (D,Q,En);
input D,En;
output Q;
wire Q;
assign Q=En?D:Q;
endmodule

Note: Using “assign” to describe sequential logic using conditional
operator.
Cyclic dependency of net also infers latch.

Q
LATCH

D

En

Module-1 15FPGA BASED SYSTEM DESIGN

FPGA BASED SYSTEM DESIGN

Delay values control the time between the change in a right

hand-side operand and when the new value is assigned to

the left-hand side.

• Regular assignment delay

• Implicit continuous assignment delay

• Net declaration delay

Module-1 16

FPGA BASED SYSTEM DESIGN

Example:
module and_ex(and_out , a_in, b_in);
input a_in, b_in;
output and_out;
wire and_out;
assign #10 and_out = a_in & b_in;
endmodule

Module-1 17

The delay value is specified after the keyword assign.

Any change in values of in1 or in2 will result in a delay of 10 time units before

recomputation of the expression in1 & in2, and the result will be assigned to out.

FPGA BASED SYSTEM DESIGN

Example:

module and_ex(and_out , a_in, b_in);

input a_in, b_in;

output and_out;

wire #10 and_out = a_in & b_in;

endmodule

Module-1 18

An equivalent method is to use an implicit continuous assignment to

specify both a delay and an assignment on the net.

FPGA BASED SYSTEM DESIGN

Example:
module and_ex(and_out , a_in, b_in);
input a_in, b_in;
output and_out;
wire #10 and_out;
assign and_out = a_in & b_in;
endmodule

Module-1 19

A delay can be specified on a net when it is declared without

putting a continuous assignment on the net.

 If a delay is specified on a net out, then any value change applied

to the net out is delayed accordingly.

FPGA BASED SYSTEM DESIGN

wire out;

assign #10 out = i1 & i2; // Regular assignment delay

• The inertial delay of real circuits is modeled through

regular assignment delay.

• Any event on the RHS signals which is not lasting for the

amount of inertial delay specified will not have any effect on

the LHS target.

Module-1 20

FPGA BASED SYSTEM DESIGN
8/5/2015 VERILOG HDL PRESENTATION 21

in1

in2

out

time
10 20 30 60 70 80 85

Module-1 21

Module-1 FPGA BASED SYSTEM DESIGN 22

assign outp = (p == 4’b1111);

if (load && (select == 2’b01)) …….

assign a = b >> 1;

assign a = b << 3;

assign f = {a, b};

assign f = {a, 3’b101, b};

assign f = {x[2], y[0], a};

assign f = { 4{a} }; // replicate four times

assign f = {2’b10, 3{2’b01}, x};

Some Valid Statements

